Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1178753171235750634310 ~2002
1178764157943011325710 ~2003
1178780903235756180710 ~2002
1178781239235756247910 ~2002
1178812981707287788710 ~2003
1178851631235770326310 ~2002
1178891123235778224710 ~2002
1178944103235788820710 ~2002
11790328371650645971911 ~2004
11790520991179052099111 ~2004
11790696731886511476911 ~2004
1179124979943299983310 ~2003
1179161363235832272710 ~2002
1179173423235834684710 ~2002
1179306119235861223910 ~2002
1179332351235866470310 ~2002
1179353459235870691910 ~2002
1179448043235889608710 ~2002
11794538333538361499111 ~2005
1179484583235896916710 ~2002
1179489173707693503910 ~2003
1179500051235900010310 ~2002
11795351032830884247311 ~2005
1179633443235926688710 ~2002
1179667823235933564710 ~2002
Exponent Prime Factor Digits Year
1179772031235954406310 ~2002
1179779351235955870310 ~2002
1179833639235966727910 ~2002
1179835201707901120710 ~2003
1179843083235968616710 ~2002
1179863219943890575310 ~2003
1179907697707944618310 ~2003
11799543671887926987311 ~2004
1179964931235992986310 ~2002
1179991283235998256710 ~2002
1180025831236005166310 ~2002
1180068671236013734310 ~2002
1180087211236017442310 ~2002
11800999031180099903111 ~2004
1180107503236021500710 ~2002
1180175267944140213710 ~2003
1180177319236035463910 ~2002
1180182389944145911310 ~2003
1180245191236049038310 ~2002
11802571312124462835911 ~2004
1180294163236058832710 ~2002
11803483571888557371311 ~2004
1180358579236071715910 ~2002
1180422311236084462310 ~2002
1180424183236084836710 ~2002
Exponent Prime Factor Digits Year
1180435717708261430310 ~2003
1180445459236089091910 ~2002
1180474871236094974310 ~2002
1180487699236097539910 ~2002
1180529639236105927910 ~2002
1180548179236109635910 ~2002
1180554119944443295310 ~2003
1180652519236130503910 ~2002
1180675739236135147910 ~2002
1180676039236135207910 ~2002
1180695011236139002310 ~2002
1180697711236139542310 ~2002
1180704683236140936710 ~2002
1180771331236154266310 ~2002
1180813877944651101710 ~2003
1180818533708491119910 ~2003
11808519531653192734311 ~2004
1180852619236170523910 ~2002
1180894283236178856710 ~2002
1180899431236179886310 ~2002
11809558437794308563911 ~2006
1180966151236193230310 ~2002
1181029859236205971910 ~2002
1181044703236208940710 ~2002
1181054939944843951310 ~2003
Exponent Prime Factor Digits Year
1181063783236212756710 ~2002
1181072351236214470310 ~2002
11811019131653542678311 ~2004
1181158259236231651910 ~2002
1181208157708724894310 ~2003
1181275541945020432910 ~2003
1181276717945021373710 ~2003
1181336447945069157710 ~2003
1181344511236268902310 ~2002
1181370479236274095910 ~2002
1181396063236279212710 ~2002
1181525677708915406310 ~2003
1181534831236306966310 ~2002
1181558243236311648710 ~2002
1181565419236313083910 ~2002
1181611883236322376710 ~2002
1181619563236323912710 ~2002
1181651423236330284710 ~2002
1181698913709019347910 ~2003
1181700983236340196710 ~2002
1181713259236342651910 ~2002
11817250031181725003111 ~2004
1181756171236351234310 ~2002
1181771917709063150310 ~2003
1181825063236365012710 ~2002
Home
5.187.277 digits
e-mail
25-11-17