Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2184302231436860446310 ~2004
2184356423436871284710 ~2004
2184438071436887614310 ~2004
2184478151436895630310 ~2004
2184489623436897924710 ~2004
2184533051436906610310 ~2004
21845852593932253466311 ~2006
2184674279436934855910 ~2004
2184775139436955027910 ~2004
21848979011310938740711 ~2005
2184904643436980928710 ~2004
2184917831436983566310 ~2004
2185078019437015603910 ~2004
2185288379437057675910 ~2004
21853192073933574572711 ~2006
218542078113549608842312 ~2008
21854566811311274008711 ~2005
2185693439437138687910 ~2004
2185713863437142772710 ~2004
2185878143437175628710 ~2004
21859014131311540847911 ~2005
21859853531311591211911 ~2005
2186072459437214491910 ~2004
2186079179437215835910 ~2004
218608653720549213447912 ~2008
Exponent Prime Factor Digits Year
21861563413497850145711 ~2006
21862234011748978720911 ~2005
2186267483437253496710 ~2004
21862804011311768240711 ~2005
2186337143437267428710 ~2004
2186377943437275588710 ~2004
21864734091749178727311 ~2005
2186480171437296034310 ~2004
21864911895247578853711 ~2007
2186572571437314514310 ~2004
2186635439437327087910 ~2004
2186763503437352700710 ~2004
2186786363437357272710 ~2004
2186796791437359358310 ~2004
2186800391437360078310 ~2004
2186808551437361710310 ~2004
21870349338748139732111 ~2007
2187076439437415287910 ~2004
21871923611312315416711 ~2005
21872297531312337851911 ~2005
2187274559437454911910 ~2004
21872789599186571627911 ~2007
2187399143437479828710 ~2004
21876283071750102645711 ~2005
2187673811437534762310 ~2004
Exponent Prime Factor Digits Year
21877172931312630375911 ~2005
2187754091437550818310 ~2004
2187785531437557106310 ~2004
2187819911437563982310 ~2004
21878270695250784965711 ~2007
2187835631437567126310 ~2004
218787311311814514810312 ~2007
2188183463437636692710 ~2004
2188246883437649376710 ~2004
2188254791437650958310 ~2004
21882712071750616965711 ~2005
21883101411312986084711 ~2005
2188436111437687222310 ~2004
21884929731313095783911 ~2005
2188538543437707708710 ~2004
2188588799437717759910 ~2004
2188644383437728876710 ~2004
2188743911437748782310 ~2004
2188750643437750128710 ~2004
2188818899437763779910 ~2004
2188819463437763892710 ~2004
2188889399437777879910 ~2004
2188890503437778100710 ~2004
21889133511751130680911 ~2005
2188924931437784986310 ~2004
Exponent Prime Factor Digits Year
2189163659437832731910 ~2004
2189195699437839139910 ~2004
2189276123437855224710 ~2004
2189281931437856386310 ~2004
2189367923437873584710 ~2004
21896637891751731031311 ~2005
2189679623437935924710 ~2004
21897218931313833135911 ~2005
2189803571437960714310 ~2004
21898548371313912902311 ~2005
2189913623437982724710 ~2004
2190061259438012251910 ~2004
21901043811314062628711 ~2005
21902316771314139006311 ~2005
21902395098760958036111 ~2007
2190276503438055300710 ~2004
2190326063438065212710 ~2004
2190468443438093688710 ~2004
2190478571438095714310 ~2004
21905508011314330480711 ~2005
2190590639438118127910 ~2004
2190620699438124139910 ~2004
21907558435695965191911 ~2007
2190820451438164090310 ~2004
21908309271752664741711 ~2005
Home
4.768.925 digits
e-mail
25-05-04