Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17778639071777863907111 ~2005
1778015243355603048710 ~2003
17780398671422431893711 ~2005
1778047283355609456710 ~2003
177804817934138525036912 ~2008
17781038532844966164911 ~2005
1778158463355631692710 ~2003
1778166011355633202310 ~2003
1778245439355649087910 ~2003
1778328899355665779910 ~2003
1778469839355693967910 ~2003
1778475623355695124710 ~2003
1778524211355704842310 ~2003
1778593871355718774310 ~2003
1778609099355721819910 ~2003
17786401732490096242311 ~2005
1778642111355728422310 ~2003
17786799131067207947911 ~2004
17787130372490198251911 ~2005
17787325371422986029711 ~2005
1778763851355752770310 ~2003
1778791559355758311910 ~2003
1778803991355760798310 ~2003
1778847359355769471910 ~2003
1778866031355773206310 ~2003
Exponent Prime Factor Digits Year
1778867339355773467910 ~2003
1779069899355813979910 ~2003
17791223571423297885711 ~2005
1779145559355829111910 ~2003
1779164879355832975910 ~2003
17791801494270032357711 ~2006
1779193919355838783910 ~2003
1779246779355849355910 ~2003
1779270743355854148710 ~2003
1779298739355859747910 ~2003
1779323831355864766310 ~2003
1779335879355867175910 ~2003
1779363863355872772710 ~2003
1779404411355880882310 ~2003
1779436031355887206310 ~2003
1779443903355888780710 ~2003
17794984193203097154311 ~2006
1779537659355907531910 ~2003
17795434971067726098311 ~2004
1779557303355911460710 ~2003
1779595379355919075910 ~2003
1779649559355929911910 ~2003
1779649691355929938310 ~2003
17796907071423752565711 ~2005
1779697091355939418310 ~2003
Exponent Prime Factor Digits Year
1779787319355957463910 ~2003
17797917711423833416911 ~2005
17798690111779869011111 ~2005
1779935471355987094310 ~2003
1779959003355991800710 ~2003
17799881171067992870311 ~2004
1780024643356004928710 ~2003
1780030463356006092710 ~2003
17801754431780175443111 ~2005
17801928711424154296911 ~2005
17802377771068142666311 ~2004
17803129311424250344911 ~2005
1780319759356063951910 ~2003
17803324791424265983311 ~2005
1780360811356072162310 ~2003
1780450163356090032710 ~2003
17804772411068286344711 ~2004
1780498019356099603910 ~2003
17805104811424408384911 ~2005
1780571951356114390310 ~2003
17807127771068427666311 ~2004
1780715399356143079910 ~2003
1780754243356150848710 ~2003
17807644812849223169711 ~2005
1780784711356156942310 ~2003
Exponent Prime Factor Digits Year
1780787279356157455910 ~2003
1780839839356167967910 ~2003
17808548771068512926311 ~2004
17809030271780903027111 ~2005
1780965311356193062310 ~2003
17810094072849615051311 ~2005
17810851139974076632911 ~2007
17811574371068694462311 ~2004
1781159519356231903910 ~2003
1781345711356269142310 ~2003
1781351003356270200710 ~2003
17814320471781432047111 ~2005
1781434211356286842310 ~2003
17814542172850326747311 ~2005
1781494079356298815910 ~2003
1781505851356301170310 ~2003
17815883771068953026311 ~2004
17816251615344875483111 ~2006
1781636903356327380710 ~2003
1781651411356330282310 ~2003
17816632391781663239111 ~2005
1781687051356337410310 ~2003
1781725223356345044710 ~2003
17817354291425388343311 ~2005
1781746511356349302310 ~2003
Home
4.768.925 digits
e-mail
25-05-04