Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1757687219351537443910 ~2003
1757736551351547310310 ~2003
17578821431757882143111 ~2005
1757986283351597256710 ~2003
1758031631351606326310 ~2003
1758041591351608318310 ~2003
1758050039351610007910 ~2003
1758071351351614270310 ~2003
1758281039351656207910 ~2003
17583888172461744343911 ~2005
17585317011406825360911 ~2005
1758610019351722003910 ~2003
17586109611055166576711 ~2004
1758738203351747640710 ~2003
17588365811055301948711 ~2004
1758846059351769211910 ~2003
1758896039351779207910 ~2003
17590402372462656331911 ~2005
1759063343351812668710 ~2003
17592328011407386240911 ~2005
1759233263351846652710 ~2003
17592803811055568228711 ~2004
17592845811407427664911 ~2005
17593162272814905963311 ~2005
1759337399351867479910 ~2003
Exponent Prime Factor Digits Year
1759409831351881966310 ~2003
1759421063351884212710 ~2003
1759449071351889814310 ~2003
1759479959351895991910 ~2003
17595427731055725663911 ~2004
17595766971055746018311 ~2004
1759594451351918890310 ~2003
17596672191407733775311 ~2005
17596680131055800807911 ~2004
17596710411407736832911 ~2005
17598042975279412891111 ~2006
1759810931351962186310 ~2003
1759846463351969292710 ~2003
1759908803351981760710 ~2003
1759931291351986258310 ~2003
17599851195983949404711 ~2006
1760119391352023878310 ~2003
1760183891352036778310 ~2003
17602635291408210823311 ~2005
1760287871352057574310 ~2003
1760303339352060667910 ~2003
17603650911408292072911 ~2005
17605773171056346390311 ~2004
1760679671352135934310 ~2003
1760693411352138682310 ~2003
Exponent Prime Factor Digits Year
176070268978879480467312 ~2009
1760714183352142836710 ~2003
1760744963352148992710 ~2003
1760804351352160870310 ~2003
1760872391352174478310 ~2003
17608818971056529138311 ~2004
176099294912679149232912 ~2007
1761030203352206040710 ~2003
1761076991352215398310 ~2003
17610818531056649111911 ~2004
17611191891408895351311 ~2005
1761127139352225427910 ~2003
1761160799352232159910 ~2003
1761173723352234744710 ~2003
17612236372465713091911 ~2005
1761226619352245323910 ~2003
17612607011056756420711 ~2004
1761283943352256788710 ~2003
17614993511761499351111 ~2005
17616780012818684801711 ~2005
1761714203352342840710 ~2003
1761820523352364104710 ~2003
1761860819352372163910 ~2003
17619168291409533463311 ~2005
1761962651352392530310 ~2003
Exponent Prime Factor Digits Year
17620990131057259407911 ~2004
17621768411057306104711 ~2004
17621812095286543627111 ~2006
1762205603352441120710 ~2003
17622117471409769397711 ~2005
17622649491409811959311 ~2005
17622665931057359955911 ~2004
176237335928197973744112 ~2008
17624239131057454347911 ~2004
17624438331057466299911 ~2004
1762467743352493548710 ~2003
1762475219352495043910 ~2003
17625818171057549090311 ~2004
1762610123352522024710 ~2003
1762629923352525984710 ~2003
1762657283352531456710 ~2003
1762668203352533640710 ~2003
1762708043352541608710 ~2003
1762764911352552982310 ~2003
1762796099352559219910 ~2003
1762819319352563863910 ~2003
17628346931057700815911 ~2004
17630400171410432013711 ~2005
17630912571057854754311 ~2004
1763097179352619435910 ~2003
Home
4.768.925 digits
e-mail
25-05-04