Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
14977407711198192616911 ~2004
1497742733898645639910 ~2004
1497765011299553002310 ~2003
1497767963299553592710 ~2003
1497838679299567735910 ~2003
14978403073594816736911 ~2005
1497858337898715002310 ~2004
1497884159299576831910 ~2003
1497885217898731130310 ~2004
14978998392696219710311 ~2005
1497912131299582426310 ~2003
1497915623299583124710 ~2003
1497916573898749943910 ~2004
1497921179299584235910 ~2003
1497941891299588378310 ~2003
1497968663299593732710 ~2003
1497974171299594834310 ~2003
1498043759299608751910 ~2003
1498051343299610268710 ~2003
14982170811198573664911 ~2004
1498256183299651236710 ~2003
1498318439299663687910 ~2003
1498400831299680166310 ~2003
1498401659299680331910 ~2003
1498461803299692360710 ~2003
Exponent Prime Factor Digits Year
1498528319299705663910 ~2003
1498553951299710790310 ~2003
1498634197899180518310 ~2004
1498656613899193967910 ~2004
1498715279299743055910 ~2003
1498726499299745299910 ~2003
14988733071199098645711 ~2004
1498941701899365020710 ~2004
1498987043299797408710 ~2003
1499018831299803766310 ~2003
1499062837899437702310 ~2004
14991147172098760603911 ~2005
1499126171299825234310 ~2003
1499151653899490991910 ~2004
1499171963299834392710 ~2003
1499179823299835964710 ~2003
1499184671299836934310 ~2003
1499201293899520775910 ~2004
1499212619299842523910 ~2003
1499295419299859083910 ~2003
1499303759299860751910 ~2003
1499330737899598442310 ~2004
1499335751299867150310 ~2003
1499341559299868311910 ~2003
1499372291299874458310 ~2003
Exponent Prime Factor Digits Year
1499416631299883326310 ~2003
14994218991199537519311 ~2004
1499422163299884432710 ~2003
14994223031499422303111 ~2004
1499439803299887960710 ~2003
1499441543299888308710 ~2003
1499497283299899456710 ~2003
1499697581899818548710 ~2004
1499792111299958422310 ~2003
14998036077499018035111 ~2006
14998494114799518115311 ~2006
1499855677899913406310 ~2004
1499857643299971528710 ~2003
1499883851299976770310 ~2003
14999011871499901187111 ~2004
1499942183299988436710 ~2003
1499948111299989622310 ~2003
1499967037899980222310 ~2004
1500050771300010154310 ~2003
1500051821900031092710 ~2004
1500100919300020183910 ~2003
1500102683300020536710 ~2003
1500123923300024784710 ~2003
15001893111200151448911 ~2004
15002389372100334511911 ~2005
Exponent Prime Factor Digits Year
15002792712700502687911 ~2005
1500293051300058610310 ~2003
1500334681900200808710 ~2004
1500379451300075890310 ~2003
1500391019300078203910 ~2003
1500493919300098783910 ~2003
1500556223300111244710 ~2003
1500556763300111352710 ~2003
1500577619300115523910 ~2003
1500621599300124319910 ~2003
1500644891300128978310 ~2003
15006465911500646591111 ~2004
1500691403300138280710 ~2003
1500755351300151070310 ~2003
15008028894502408667111 ~2006
1500901943300180388710 ~2003
1500967631300193526310 ~2003
1501033777900620266310 ~2004
15011378872702048196711 ~2005
15012011711501201171111 ~2004
1501324943300264988710 ~2003
15013409211201072736911 ~2004
1501421897900853138310 ~2004
1501498451300299690310 ~2003
1501531331300306266310 ~2003
Home
4.768.925 digits
e-mail
25-05-04