Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1662420299332484059910 ~2003
1662549803332509960710 ~2003
1662564731332512946310 ~2003
1662565799332513159910 ~2003
16626065991330085279311 ~2004
1662658163332531632710 ~2003
16626632874322924546311 ~2006
1662697511332539502310 ~2003
1662745079332549015910 ~2003
16628288231662828823111 ~2005
16629386871330350949711 ~2004
1662972299332594459910 ~2003
1663002983332600596710 ~2003
1663028651332605730310 ~2003
1663035791332607158310 ~2003
1663087463332617492710 ~2003
1663131443332626288710 ~2003
1663222859332644571910 ~2003
1663257839332651567910 ~2003
1663393871332678774310 ~2003
1663399511332679902310 ~2003
16634209616320999651911 ~2006
1663439861998063916710 ~2004
1663542431332708486310 ~2003
1663569359332713871910 ~2003
Exponent Prime Factor Digits Year
16636126611330890128911 ~2004
1663646459332729291910 ~2003
1663724039332744807910 ~2003
16638409872662145579311 ~2005
1663886519332777303910 ~2003
1663898963332779792710 ~2003
1663924919332784983910 ~2003
1663937651332787530310 ~2003
166405373310317133144712 ~2007
1664095703332819140710 ~2003
1664116141998469684710 ~2004
1664221439332844287910 ~2003
16642436391331394911311 ~2004
1664339177998603506310 ~2004
1664371979332874395910 ~2003
1664413739332882747910 ~2003
16644220932663075348911 ~2005
16644633291331570663311 ~2004
1664485499332897099910 ~2003
1664531399332906279910 ~2003
16645797111331663768911 ~2004
1664593937998756362310 ~2004
1664597351332919470310 ~2003
1664663201998797920710 ~2004
1664685311332937062310 ~2003
Exponent Prime Factor Digits Year
16647693972663631035311 ~2005
1664771243332954248710 ~2003
16648261796992269951911 ~2006
1664885543332977108710 ~2003
1664885951332977190310 ~2003
1664933639332986727910 ~2003
1664990291332998058310 ~2003
1665102073999061243910 ~2004
1665144683333028936710 ~2003
1665145103333029020710 ~2003
1665155873999093523910 ~2004
1665193703333038740710 ~2003
1665195671333039134310 ~2003
1665202573999121543910 ~2004
16652426534995727959111 ~2006
16652493012664398881711 ~2005
1665340577999204346310 ~2004
1665391523333078304710 ~2003
16654150911332332072911 ~2004
166543585125314624935312 ~2008
1665483203333096640710 ~2003
16655432391332434591311 ~2004
1665553691333110738310 ~2003
1665577451333115490310 ~2003
16655824872998048476711 ~2005
Exponent Prime Factor Digits Year
16656051733664331380711 ~2006
1665608531333121706310 ~2003
1665633553999380131910 ~2004
16656386091332510887311 ~2004
1665651983333130396710 ~2003
1665704543333140908710 ~2003
1665800963333160192710 ~2003
1665803521999482112710 ~2004
1665858113999514867910 ~2004
1665858251333171650310 ~2003
1665871079333174215910 ~2003
1666077277999646366310 ~2004
1666091939333218387910 ~2003
1666095131333219026310 ~2003
1666124699333224939910 ~2003
1666150259333230051910 ~2003
1666155479333231095910 ~2003
1666210379333242075910 ~2003
1666214279333242855910 ~2003
1666236191333247238310 ~2003
16662774891333021991311 ~2004
1666295221999777132710 ~2004
1666304021999782412710 ~2004
16664099476665639788111 ~2006
1666434179333286835910 ~2003
Home
4.768.925 digits
e-mail
25-05-04