Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1835740943367148188710 ~2003
1835756399367151279910 ~2003
18358059531101483571911 ~2005
18358246331101494779911 ~2005
1835827211367165442310 ~2003
1835835971367167194310 ~2003
18358381611101502896711 ~2005
1835840459367168091910 ~2003
1835848583367169716710 ~2003
1835850143367170028710 ~2003
1835853143367170628710 ~2003
1835887199367177439910 ~2003
18358918671468713493711 ~2005
18359466771101568006311 ~2005
18360044411101602664711 ~2005
1836006779367201355910 ~2003
1836073919367214783910 ~2003
1836095099367219019910 ~2003
1836133199367226639910 ~2003
1836308783367261756710 ~2003
1836331583367266316710 ~2003
1836370631367274126310 ~2003
1836374363367274872710 ~2003
1836386543367277308710 ~2003
1836387359367277471910 ~2003
Exponent Prime Factor Digits Year
1836404543367280908710 ~2003
1836573443367314688710 ~2003
1836613451367322690310 ~2003
18366472095509941627111 ~2006
18366532571101991954311 ~2005
1836672023367334404710 ~2003
1836679391367335878310 ~2003
1836730403367346080710 ~2003
1836839159367367831910 ~2003
18368403111469472248911 ~2005
18369094273306436968711 ~2006
18369414411102164864711 ~2005
1836986363367397272710 ~2003
1837004243367400848710 ~2003
18370348611469627888911 ~2005
1837081391367416278310 ~2003
1837113191367422638310 ~2003
1837195571367439114310 ~2003
1837199183367439836710 ~2003
1837448939367489787910 ~2003
1837491611367498322310 ~2003
18375697071470055765711 ~2005
18375748911470059912911 ~2005
1837600991367520198310 ~2003
1837620731367524146310 ~2003
Exponent Prime Factor Digits Year
18376708311470136664911 ~2005
18377009471837700947111 ~2005
18377195537350878212111 ~2007
1837763783367552756710 ~2003
183777029925361230126312 ~2008
18378950932573053130311 ~2005
18379371171470349693711 ~2005
18379764892573167084711 ~2005
1837982483367596496710 ~2003
1837997543367599508710 ~2003
1838025863367605172710 ~2003
18380358193308464474311 ~2006
18380617811102837068711 ~2005
1838233931367646786310 ~2003
18382857971102971478311 ~2005
18382996271838299627111 ~2005
1838343599367668719910 ~2003
1838373479367674695910 ~2003
1838389823367677964710 ~2003
18384453471470756277711 ~2005
1838455103367691020710 ~2003
18385419071838541907111 ~2005
1838578811367715762310 ~2003
1838596139367719227910 ~2003
18386970191838697019111 ~2005
Exponent Prime Factor Digits Year
18387194811470975584911 ~2005
18387364611103241876711 ~2005
1838772251367754450310 ~2003
1838850659367770131910 ~2003
1838878511367775702310 ~2003
18388907171103334430311 ~2005
18388977471471118197711 ~2005
1839001019367800203910 ~2003
1839029303367805860710 ~2003
18391642211103498532711 ~2005
1839288443367857688710 ~2003
18393665771103619946311 ~2005
1839391679367878335910 ~2003
18394105191471528415311 ~2005
1839434123367886824710 ~2003
1839571523367914304710 ~2003
1839636923367927384710 ~2003
1839662771367932554310 ~2003
18399091031839909103111 ~2005
1839946403367989280710 ~2003
18400882271840088227111 ~2005
1840156379368031275910 ~2003
18401784771104107086311 ~2005
18402347231840234723111 ~2005
18403092531104185551911 ~2005
Home
4.768.925 digits
e-mail
25-05-04