Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12848333111284833311111 ~2004
1284872819256974563910 ~2002
1284906743256981348710 ~2002
1284910199256982039910 ~2002
1284910871256982174310 ~2002
1284915143256983028710 ~2002
1284991511256998302310 ~2002
12850288391285028839111 ~2004
1285100291257020058310 ~2002
1285155083257031016710 ~2002
1285156079257031215910 ~2002
1285165631257033126310 ~2002
1285172543257034508710 ~2002
1285221599257044319910 ~2002
1285224113771134467910 ~2003
12852865935912318327911 ~2005
1285298363257059672710 ~2002
1285317191257063438310 ~2002
1285364939257072987910 ~2002
1285372463257074492710 ~2002
1285379597771227758310 ~2003
1285515743257103148710 ~2002
1285529537771317722310 ~2003
1285531319257106263910 ~2002
1285599013771359407910 ~2003
Exponent Prime Factor Digits Year
1285673783257134756710 ~2002
1285714883257142976710 ~2002
1285756739257151347910 ~2002
1285764719257152943910 ~2002
12857846937200394280911 ~2006
1285844099257168819910 ~2002
1285853483257170696710 ~2002
1285911251257182250310 ~2002
1285940003257188000710 ~2002
1285960691257192138310 ~2002
12860090272314816248711 ~2004
1286016551257203310310 ~2002
1286023163257204632710 ~2002
1286046119257209223910 ~2002
1286091671257218334310 ~2002
1286097623257219524710 ~2002
12861286371028902909711 ~2004
12861291671286129167111 ~2004
1286149703257229940710 ~2002
1286170331257234066310 ~2002
1286270957771762574310 ~2003
12862881893858864567111 ~2005
1286330291257266058310 ~2002
1286360891257272178310 ~2002
1286411363257282272710 ~2002
Exponent Prime Factor Digits Year
1286451503257290300710 ~2002
128645525915694754159912 ~2007
12864604194116673340911 ~2005
1286518559257303711910 ~2002
1286524081771914448710 ~2003
12865459916432729955111 ~2006
1286562059257312411910 ~2002
1286562793771937675910 ~2003
1286637257771982354310 ~2003
12866485911029318872911 ~2004
12866539191029323135311 ~2004
1286675399257335079910 ~2002
12866852691029348215311 ~2004
1286700203257340040710 ~2002
12867111839264320517711 ~2006
12867657411029412592911 ~2004
1286776391257355278310 ~2002
12868375971029470077711 ~2004
1286840003257368000710 ~2002
1286890883257378176710 ~2002
12869229293088615029711 ~2005
1286944283257388856710 ~2002
1286955119257391023910 ~2002
1286959057772175434310 ~2003
1287021803257404360710 ~2002
Exponent Prime Factor Digits Year
1287036841772222104710 ~2003
1287163571257432714310 ~2002
1287205319257441063910 ~2002
1287231191257446238310 ~2002
1287235451257447090310 ~2002
12872941493089505957711 ~2005
1287307523257461504710 ~2002
1287410521772446312710 ~2003
1287505679257501135910 ~2002
1287519911257503982310 ~2002
1287565511257513102310 ~2002
1287585941772551564710 ~2003
1287612541772567524710 ~2003
1287618433772571059910 ~2003
12876379731802693162311 ~2004
1287722939257544587910 ~2002
1287734543257546908710 ~2002
1287740017772644010310 ~2003
1287779651257555930310 ~2002
1287787103257557420710 ~2002
1287792419257558483910 ~2002
1287800231257560046310 ~2002
1287817859257563571910 ~2002
1287827759257565551910 ~2002
1287836183257567236710 ~2002
Home
4.768.925 digits
e-mail
25-05-04