Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
14076608871126128709711 ~2004
1407676691281535338310 ~2002
1407755003281551000710 ~2002
1407790931281558186310 ~2002
1407791243281558248710 ~2002
1407830159281566031910 ~2002
1407839663281567932710 ~2002
1407864791281572958310 ~2002
1407896183281579236710 ~2002
1407899879281579975910 ~2002
1407942461844765476710 ~2004
14079482391126358591311 ~2004
1408004219281600843910 ~2002
1408006163281601232710 ~2002
1408179131281635826310 ~2002
1408186573844911943910 ~2004
1408235243281647048710 ~2002
1408244053844946431910 ~2004
14082505131971550718311 ~2005
1408252931281650586310 ~2002
1408279871281655974310 ~2002
1408296563281659312710 ~2002
14082966291126637303311 ~2004
1408314581844988748710 ~2004
1408357019281671403910 ~2002
Exponent Prime Factor Digits Year
1408364519281672903910 ~2002
1408417331281683466310 ~2002
1408434431281686886310 ~2002
1408479983281695996710 ~2002
1408492859281698571910 ~2002
1408496381845097828710 ~2004
1408500083281700016710 ~2002
1408501271281700254310 ~2002
1408602781845161668710 ~2004
14086214575352761536711 ~2006
1408690919281738183910 ~2002
1408703123281740624710 ~2002
1408705271281741054310 ~2002
1408759841845255904710 ~2004
1408761131281752226310 ~2002
1408767323281753464710 ~2002
1408793531281758706310 ~2002
1408794323281758864710 ~2002
1408798091281759618310 ~2002
1408810583281762116710 ~2002
14088111891127048951311 ~2004
1408818263281763652710 ~2002
1408834139281766827910 ~2002
1408840739281768147910 ~2002
1408965683281793136710 ~2002
Exponent Prime Factor Digits Year
1408991123281798224710 ~2002
1409018291281803658310 ~2002
1409062661845437596710 ~2004
1409088311281817662310 ~2002
140909066313527270364912 ~2007
1409155883281831176710 ~2002
1409171171281834234310 ~2002
1409234063281846812710 ~2002
1409288183281857636710 ~2002
1409301359281860271910 ~2002
14093338371973067371911 ~2005
1409413091281882618310 ~2002
1409454073845672443910 ~2004
14094542295637816916111 ~2006
14095095795919940231911 ~2006
1409513459281902691910 ~2002
1409527333845716399910 ~2004
14096031592537285686311 ~2005
1409625901845775540710 ~2004
1409674181845804508710 ~2004
1409690963281938192710 ~2002
1409695211281939042310 ~2002
1409739119281947823910 ~2002
14097449931973642990311 ~2005
1409796863281959372710 ~2002
Exponent Prime Factor Digits Year
1409808503281961700710 ~2002
1409831639281966327910 ~2002
1409840123281968024710 ~2002
14098441991409844199111 ~2004
14098520472537733684711 ~2005
14098800411127904032911 ~2004
1409892923281978584710 ~2002
1409953679281990735910 ~2002
141000859911562070511912 ~2006
1410076379282015275910 ~2002
14101511633666393023911 ~2005
1410169451282033890310 ~2002
1410231083282046216710 ~2002
1410231239282046247910 ~2002
1410231479282046295910 ~2002
1410283811282056762310 ~2002
1410295739282059147910 ~2002
1410312251282062450310 ~2002
1410329051282065810310 ~2002
1410378023282075604710 ~2002
14104872791410487279111 ~2004
1410555323282111064710 ~2002
1410589151282117830310 ~2002
1410618791282123758310 ~2002
14106876671410687667111 ~2004
Home
4.724.182 digits
e-mail
25-04-13