Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1311193931262238786310 ~2002
1311218317786730990310 ~2003
13112211435244884572111 ~2005
1311263483262252696710 ~2002
1311302171262260434310 ~2002
13113261111049060888911 ~2004
1311405863262281172710 ~2002
13114079173934223751111 ~2005
1311468239262293647910 ~2002
1311470483262294096710 ~2002
1311512231262302446310 ~2002
1311531839262306367910 ~2002
1311535679262307135910 ~2002
13115801773147792424911 ~2005
1311607883262321576710 ~2002
1311612839262322567910 ~2002
1311621719262324343910 ~2002
13116272571049301805711 ~2004
1311676559262335311910 ~2002
1311677771262335554310 ~2002
13116833831311683383111 ~2004
1311712093787027255910 ~2003
1311806663262361332710 ~2002
13118667719445440751311 ~2006
1311875651262375130310 ~2002
Exponent Prime Factor Digits Year
1311947699262389539910 ~2002
1311955091262391018310 ~2002
13119966891049597351311 ~2004
1312073773787244263910 ~2003
1312125791262425158310 ~2002
1312228811262445762310 ~2002
1312302311262460462310 ~2002
1312321943262464388710 ~2002
1312344899262468979910 ~2002
1312412831262482566310 ~2002
13124806912362465243911 ~2005
13125164111312516411111 ~2004
1312526651262505330310 ~2002
1312529819262505963910 ~2002
13125698211050055856911 ~2004
1312578383262515676710 ~2002
1312592783262518556710 ~2002
1312604159262520831910 ~2002
1312604171262520834310 ~2002
13126087614200348035311 ~2005
13127223191312722319111 ~2004
1312726421787635852710 ~2003
13127619413938285823111 ~2005
1312764443262552888710 ~2002
1312814411262562882310 ~2002
Exponent Prime Factor Digits Year
1312830383262566076710 ~2002
1312845277787707166310 ~2003
1312880843262576168710 ~2002
1312941863262588372710 ~2002
1312948319262589663910 ~2002
1313014673787808803910 ~2003
13130347392363462530311 ~2005
1313051303262610260710 ~2002
1313119919262623983910 ~2002
1313132279262626455910 ~2002
1313162579262632515910 ~2002
1313221631262644326310 ~2002
1313223623262644724710 ~2002
1313240723262648144710 ~2002
1313277041787966224710 ~2003
13133284333939985299111 ~2005
1313346539262669307910 ~2002
1313377463262675492710 ~2002
1313394443262678888710 ~2002
13134230172101476827311 ~2004
1313541851262708370310 ~2002
131358715967518379972712 ~2008
1313589143262717828710 ~2002
13136435571050914845711 ~2004
1313685731262737146310 ~2002
Exponent Prime Factor Digits Year
1313837879262767575910 ~2002
1313885999262777199910 ~2002
1313894579262778915910 ~2002
13139489833153477559311 ~2005
1314044663262808932710 ~2002
1314062111262812422310 ~2002
1314128111262825622310 ~2002
13141375572102620091311 ~2004
13142165991051373279311 ~2004
1314317237788590342310 ~2003
1314320837788592502310 ~2003
1314328679262865735910 ~2002
1314358679262871735910 ~2002
1314394019262878803910 ~2002
1314400561788640336710 ~2003
13144087511314408751111 ~2004
13145027232103204356911 ~2004
1314530521788718312710 ~2003
1314546503262909300710 ~2002
1314578459262915691910 ~2002
1314580523262916104710 ~2002
13145967291051677383311 ~2004
1314609581788765748710 ~2003
13146818691840554616711 ~2004
1314718343262943668710 ~2002
Home
4.768.925 digits
e-mail
25-05-04