Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
934365059186873011910 ~2001
934399703186879940710 ~2001
934413017560647810310 ~2002
934421531747537224910 ~2003
934426091747540872910 ~2003
934485743186897148710 ~2001
934491841560695104710 ~2002
934508651186901730310 ~2001
934552163186910432710 ~2001
934631723186926344710 ~2001
934641791186928358310 ~2001
934654559186930911910 ~2001
934685039186937007910 ~2001
934691497560814898310 ~2002
934701671186940334310 ~2001
934708919186941783910 ~2001
934717391186943478310 ~2001
934718957747775165710 ~2003
934719743186943948710 ~2001
934763827934763827110 ~2003
934798523186959704710 ~2001
934836181560901708710 ~2002
934862651186972530310 ~2001
934906391186981278310 ~2001
934921199186984239910 ~2001
Exponent Prime Factor Digits Year
934941779186988355910 ~2001
934964153560978491910 ~2002
935014763187002952710 ~2001
935017403187003480710 ~2001
935058863187011772710 ~2001
935139277561083566310 ~2002
935148551187029710310 ~2001
935178911748143128910 ~2003
935182537561109522310 ~2002
935183759187036751910 ~2001
935198399187039679910 ~2001
9352159971309302395911 ~2003
935281271187056254310 ~2001
935303591187060718310 ~2001
935346121561207672710 ~2002
9353514891309492084711 ~2003
9353786034676893015111 ~2004
935423617561254170310 ~2002
935436011187087202310 ~2001
935445041561267024710 ~2002
9354532975051447803911 ~2005
9354662295986983865711 ~2005
935478671187095734310 ~2001
935482861561289716710 ~2002
9355199471496831915311 ~2003
Exponent Prime Factor Digits Year
935527991187105598310 ~2001
935541317748433053710 ~2003
935545811187109162310 ~2001
9355481692245315605711 ~2004
935579999187115999910 ~2001
935587871187117574310 ~2001
935634863187126972710 ~2001
935639063187127812710 ~2001
935647439187129487910 ~2001
935656243935656243110 ~2003
935663657748530925710 ~2003
935668157561400894310 ~2002
9356802531309952354311 ~2003
935681891187136378310 ~2001
935684021561410412710 ~2002
935707439187141487910 ~2001
935728019187145603910 ~2001
935746061561447636710 ~2002
935748743187149748710 ~2001
935755979187151195910 ~2001
935764631187152926310 ~2001
935805191187161038310 ~2001
935810047935810047110 ~2003
935811497561486898310 ~2002
935827631187165526310 ~2001
Exponent Prime Factor Digits Year
935853631935853631110 ~2003
935863301561517980710 ~2002
935868733561521239910 ~2002
935875079187175015910 ~2001
935967463935967463110 ~2003
935968703187193740710 ~2001
935997971187199594310 ~2001
936020951187204190310 ~2001
9360246472246459152911 ~2004
936051983187210396710 ~2001
936057299187211459910 ~2001
9360703572808211071111 ~2004
936080003187216000710 ~2001
936086363187217272710 ~2001
9360912532246619007311 ~2004
936118499187223699910 ~2001
936135839187227167910 ~2001
936142079187228415910 ~2001
936148523187229704710 ~2001
9361616591685090986311 ~2003
9361630492995721756911 ~2004
936246743187249348710 ~2001
936263591187252718310 ~2001
936309371187261874310 ~2001
936318959187263791910 ~2001
Home
4.888.230 digits
e-mail
25-06-29