Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1337300039267460007910 ~2002
1337320031267464006310 ~2002
1337321603267464320710 ~2002
1337354951267470990310 ~2002
1337381351267476270310 ~2002
1337414363267482872710 ~2002
13374443991069955519311 ~2004
13374669533209920687311 ~2005
1337501999267500399910 ~2002
1337532263267506452710 ~2002
1337537477802522486310 ~2003
1337598791267519758310 ~2002
1337620079267524015910 ~2002
1337626919267525383910 ~2002
1337689751267537950310 ~2002
13377107211070168576911 ~2004
1337711099267542219910 ~2002
13377581871070206549711 ~2004
1337784971267556994310 ~2002
13377973676688986835111 ~2006
1337870519267574103910 ~2002
13378846876421846497711 ~2006
13378847591337884759111 ~2004
1337901899267580379910 ~2002
133790350719265810500912 ~2007
Exponent Prime Factor Digits Year
1337917643267583528710 ~2002
1337961851267592370310 ~2002
1337990999267598199910 ~2002
1338047663267609532710 ~2002
1338108899267621779910 ~2002
1338112679267622535910 ~2002
1338140653802884391910 ~2003
1338153263267630652710 ~2002
1338178757802907254310 ~2003
1338188003267637600710 ~2002
13381999971873479995911 ~2004
1338236579267647315910 ~2002
1338263039267652607910 ~2002
1338276899267655379910 ~2002
1338282839267656567910 ~2002
1338315401802989240710 ~2003
13383535911070682872911 ~2004
1338360851267672170310 ~2002
1338366839267673367910 ~2002
1338369239267673847910 ~2002
1338376439267675287910 ~2002
13384215171873790123911 ~2004
1338440891267688178310 ~2002
1338467639267693527910 ~2002
1338473711267694742310 ~2002
Exponent Prime Factor Digits Year
13384786371873870091911 ~2004
1338480743267696148710 ~2002
13385051591338505159111 ~2004
13385345691873948396711 ~2004
13385959191070876735311 ~2004
1338608471267721694310 ~2002
1338617183267723436710 ~2002
1338648191267729638310 ~2002
1338674321803204592710 ~2003
1338696503267739300710 ~2002
1338707963267741592710 ~2002
1338761999267752399910 ~2002
13388233371071058669711 ~2004
1338851291267770258310 ~2002
1338898343267779668710 ~2002
1339020131267804026310 ~2002
1339031483267806296710 ~2002
13391206932142593108911 ~2004
133915591921426494704112 ~2007
1339214483267842896710 ~2002
13392376311071390104911 ~2004
1339254671267850934310 ~2002
1339308023267861604710 ~2002
1339404719267880943910 ~2002
1339421411267884282310 ~2002
Exponent Prime Factor Digits Year
1339461551267892310310 ~2002
1339469401803681640710 ~2003
1339485551267897110310 ~2002
1339497613803698567910 ~2003
1339561763267912352710 ~2002
1339613699267922739910 ~2002
133967737710449483540712 ~2006
1339677551267935510310 ~2002
1339696199267939239910 ~2002
1339787303267957460710 ~2002
1339795871267959174310 ~2002
1339797983267959596710 ~2002
13398271871339827187111 ~2004
1339870403267974080710 ~2002
13398844871339884487111 ~2004
1339919699267983939910 ~2002
1339947913803968747910 ~2003
1339957523267991504710 ~2002
1339959899267991979910 ~2002
1339977239267995447910 ~2002
1339983119267996623910 ~2002
1339992539267998507910 ~2002
1340051963268010392710 ~2002
1340090051268018010310 ~2002
1340098751268019750310 ~2002
Home
4.724.182 digits
e-mail
25-04-13