Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1246341581747804948710 ~2003
1246412831249282566310 ~2002
1246444883249288976710 ~2002
12465876311994540209711 ~2004
1246676159249335231910 ~2002
1246757591997406072910 ~2004
1246777223249355444710 ~2002
1246833997748100398310 ~2003
1246835279249367055910 ~2002
1246850593748110355910 ~2003
12468647931745610710311 ~2004
1246880879249376175910 ~2002
12469016298728311403111 ~2006
12469140131995062420911 ~2004
1246942211249388442310 ~2002
1246951859249390371910 ~2002
1247063399249412679910 ~2002
1247073587997658869710 ~2004
1247083703249416740710 ~2002
1247121779249424355910 ~2002
1247130719249426143910 ~2002
12471703991247170399111 ~2004
12471789176734766151911 ~2006
1247198717997758973710 ~2004
12472268532743899076711 ~2005
Exponent Prime Factor Digits Year
1247303159249460631910 ~2002
1247313533748388119910 ~2003
1247320031249464006310 ~2002
1247328611249465722310 ~2002
1247358851249471770310 ~2002
1247433023249486604710 ~2002
1247450651249490130310 ~2002
1247466431249493286310 ~2002
1247477639249495527910 ~2002
12475091293742527387111 ~2005
12475503191247550319111 ~2004
1247551463249510292710 ~2002
1247554631249510926310 ~2002
1247579783249515956710 ~2002
1247627063249525412710 ~2002
1247644439249528887910 ~2002
1247649131249529826310 ~2002
1247677979998142383310 ~2004
1247700749998160599310 ~2004
1247732879249546575910 ~2002
1247736239249547247910 ~2002
1247763911249552782310 ~2002
1247849651249569930310 ~2002
1247871671249574334310 ~2002
1247883683249576736710 ~2002
Exponent Prime Factor Digits Year
1247913119249582623910 ~2002
1247921861748753116710 ~2003
12479249272246264868711 ~2004
1247947817748768690310 ~2003
1247981699249596339910 ~2002
1248001213748800727910 ~2003
12480121511996819441711 ~2004
12480204072246436732711 ~2004
1248041423249608284710 ~2002
1248057059249611411910 ~2002
1248084791249616958310 ~2002
1248115223249623044710 ~2002
1248123743249624748710 ~2002
1248128041748876824710 ~2003
1248151349998521079310 ~2004
1248165839249633167910 ~2002
1248207011249641402310 ~2002
1248261299249652259910 ~2002
1248273179249654635910 ~2002
1248304649998643719310 ~2004
1248326699249665339910 ~2002
1248363299249672659910 ~2002
1248375119249675023910 ~2002
1248396557749037934310 ~2003
1248402641998722112910 ~2004
Exponent Prime Factor Digits Year
1248441731998753384910 ~2004
1248485999249697199910 ~2002
1248492737998794189710 ~2004
1248505859249701171910 ~2002
1248546263249709252710 ~2002
1248550223249710044710 ~2002
1248663341998930672910 ~2004
1248750311249750062310 ~2002
1248760511249752102310 ~2002
12488344031248834403111 ~2004
1248841019249768203910 ~2002
1248852431249770486310 ~2002
12489493673247268354311 ~2005
12490267632997664231311 ~2005
1249042211999233768910 ~2004
1249060511249812102310 ~2002
1249072091249814418310 ~2002
1249148171999318536910 ~2004
1249156043249831208710 ~2002
1249176077749505646310 ~2003
12492058436246029215111 ~2005
1249213583249842716710 ~2002
1249313771249862754310 ~2002
1249357511999486008910 ~2004
1249365893749619535910 ~2003
Home
4.768.925 digits
e-mail
25-05-04