Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1076114357645668614310 ~2003
1076152943215230588710 ~2002
10761729072582814976911 ~2004
1076212811215242562310 ~2002
1076232389860985911310 ~2003
1076241251215248250310 ~2002
1076247899215249579910 ~2002
1076270339215254067910 ~2002
1076284571215256914310 ~2002
1076320871861056696910 ~2003
1076326379215265275910 ~2002
1076331059215266211910 ~2002
1076340803215268160710 ~2002
1076342363215268472710 ~2002
1076358191215271638310 ~2002
1076365583215273116710 ~2002
1076367263215273452710 ~2002
1076388671215277734310 ~2002
1076391131215278226310 ~2002
1076400239215280047910 ~2002
1076464897645878938310 ~2003
107647458714640054383312 ~2006
1076560679215312135910 ~2002
1076570459215314091910 ~2002
1076628743215325748710 ~2002
Exponent Prime Factor Digits Year
1076637623215327524710 ~2002
1076642051215328410310 ~2002
10766915091507368112711 ~2004
1076742239215348447910 ~2002
1076753663215350732710 ~2002
1076832023215366404710 ~2002
1076845079215369015910 ~2002
1076859923215371984710 ~2002
10768628231076862823111 ~2003
1076938991215387798310 ~2002
1076955623215391124710 ~2002
1076973659215394731910 ~2002
1076975579215395115910 ~2002
1076982983215396596710 ~2002
1077056111215411222310 ~2002
1077102493646261495910 ~2003
1077107243215421448710 ~2002
10771700714308680284111 ~2005
1077215291215443058310 ~2002
1077241283215448256710 ~2002
10772441993447181436911 ~2004
10772672813447255299311 ~2004
1077271463215454292710 ~2002
1077276997646366198310 ~2003
1077279191215455838310 ~2002
Exponent Prime Factor Digits Year
1077325871215465174310 ~2002
10773494333447518185711 ~2004
1077363671215472734310 ~2002
1077364943215472988710 ~2002
1077409103215481820710 ~2002
1077421811215484362310 ~2002
1077438839215487767910 ~2002
1077455243215491048710 ~2002
1077472211215494442310 ~2002
1077477899215495579910 ~2002
1077500999215500199910 ~2002
1077518831215503766310 ~2002
1077530939215506187910 ~2002
1077547463215509492710 ~2002
10776289391939732090311 ~2004
1077655079215531015910 ~2002
1077680603215536120710 ~2002
1077681287862145029710 ~2003
1077682391862145912910 ~2003
107771603912932592468112 ~2006
1077818243215563648710 ~2002
1077875411215575082310 ~2002
1077928619215585723910 ~2002
10779355271077935527111 ~2003
1077974759215594951910 ~2002
Exponent Prime Factor Digits Year
1077978337646787002310 ~2003
1078017443215603488710 ~2002
1078038971215607794310 ~2002
1078057199215611439910 ~2002
1078135823215627164710 ~2002
1078164011215632802310 ~2002
1078184843215636968710 ~2002
1078245719215649143910 ~2002
1078278143215655628710 ~2002
1078279199215655839910 ~2002
1078336403215667280710 ~2002
1078393271215678654310 ~2002
1078423751215684750310 ~2002
1078424159215684831910 ~2002
1078488197647092918310 ~2003
1078495163215699032710 ~2002
1078572623215714524710 ~2002
1078594457647156674310 ~2003
1078609657647165794310 ~2003
1078646483215729296710 ~2002
1078656959215731391910 ~2002
1078678379215735675910 ~2002
1078715051215743010310 ~2002
1078771931215754386310 ~2002
10787796973236339091111 ~2004
Home
4.768.925 digits
e-mail
25-05-04