Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1151497463230299492710 ~2002
1151505359230301071910 ~2002
1151523011230304602310 ~2002
11515663271842506123311 ~2004
1151566343230313268710 ~2002
1151571671230314334310 ~2002
1151605739230321147910 ~2002
1151610683230322136710 ~2002
1151623043230324608710 ~2002
1151640419230328083910 ~2002
1151678519230335703910 ~2002
1151678603230335720710 ~2002
1151758199230351639910 ~2002
1151763077691057846310 ~2003
11517866592073215986311 ~2004
1151794493691076695910 ~2003
115179869365191806023912 ~2008
1151857523230371504710 ~2002
1151861279230372255910 ~2002
1151866031230373206310 ~2002
115194382312210604523912 ~2006
1151995763230399152710 ~2002
1152032603230406520710 ~2002
1152053939230410787910 ~2002
1152055873691233523910 ~2003
Exponent Prime Factor Digits Year
1152103943230420788710 ~2002
1152104939230420987910 ~2002
1152122663230424532710 ~2002
1152144599230428919910 ~2002
1152197003230439400710 ~2002
1152203621921762896910 ~2003
1152214883230442976710 ~2002
1152250081691350048710 ~2003
1152256823230451364710 ~2002
1152271331230454266310 ~2002
1152314171230462834310 ~2002
1152324973691394983910 ~2003
1152339323230467864710 ~2002
1152348563230469712710 ~2002
1152412621691447572710 ~2003
1152425399230485079910 ~2002
1152461113691476667910 ~2003
11525036591152503659111 ~2003
11525546931613576570311 ~2004
1152600191230520038310 ~2002
1152627023230525404710 ~2002
1152628343230525668710 ~2002
1152637463230527492710 ~2002
115267297712679402747112 ~2006
1152676403230535280710 ~2002
Exponent Prime Factor Digits Year
1152709121691625472710 ~2003
1152729911230545982310 ~2002
11527350611844376097711 ~2004
1152771863230554372710 ~2002
11527738571844438171311 ~2004
1152789311230557862310 ~2002
11528295431152829543111 ~2003
11528507931613991110311 ~2004
11528877071152887707111 ~2003
1152943163230588632710 ~2002
1152953843230590768710 ~2002
1152975179230595035910 ~2002
1153031063230606212710 ~2002
1153051439230610287910 ~2002
1153062173691837303910 ~2003
1153067039230613407910 ~2002
1153136711230627342310 ~2002
1153186091230637218310 ~2002
1153206521691923912710 ~2003
1153220339230644067910 ~2002
1153254611230650922310 ~2002
1153266071230653214310 ~2002
1153317551230663510310 ~2002
1153326431230665286310 ~2002
1153353059230670611910 ~2002
Exponent Prime Factor Digits Year
11533639991153363999111 ~2003
1153369619922695695310 ~2003
1153406363230681272710 ~2002
1153426679230685335910 ~2002
1153450163230690032710 ~2002
11534606531845537044911 ~2004
1153539923230707984710 ~2002
1153569779230713955910 ~2002
1153584119230716823910 ~2002
1153600991230720198310 ~2002
1153651277922921021710 ~2003
1153707593692224555910 ~2003
1153710697692226418310 ~2003
1153776419230755283910 ~2002
1153782863230756572710 ~2002
1153798813692279287910 ~2003
1153808699230761739910 ~2002
11538283932769188143311 ~2004
1153847459230769491910 ~2002
1153849427923079541710 ~2003
1153866541692319924710 ~2003
1153874783230774956710 ~2002
1153875743230775148710 ~2002
1153905059230781011910 ~2002
1153915151230783030310 ~2002
Home
4.768.925 digits
e-mail
25-05-04