Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1231323287985058629710 ~2003
1231434443246286888710 ~2002
1231476731246295346310 ~2002
12315255912216746063911 ~2004
1231704263246340852710 ~2002
1231709161739025496710 ~2003
1231710923246342184710 ~2002
1231765163246353032710 ~2002
12317745738622422011111 ~2006
1231862987985490389710 ~2003
1231900031246380006310 ~2002
1231919219246383843910 ~2002
1231928651246385730310 ~2002
1232006903246401380710 ~2002
1232013719246402743910 ~2002
1232015591246403118310 ~2002
1232051801985641440910 ~2003
1232065511246413102310 ~2002
1232104823246420964710 ~2002
1232118143246423628710 ~2002
1232118683246423736710 ~2002
1232300117739380070310 ~2003
12323231892957575653711 ~2005
1232323331246464666310 ~2002
1232356679246471335910 ~2002
Exponent Prime Factor Digits Year
1232455331246491066310 ~2002
1232471291246494258310 ~2002
1232487059246497411910 ~2002
123250366311832035164912 ~2006
12325527671232552767111 ~2004
1232561339246512267910 ~2002
1232684231246536846310 ~2002
1232688911246537782310 ~2002
1232698091246539618310 ~2002
1232708363246541672710 ~2002
12327174171725804383911 ~2004
1232759219246551843910 ~2002
1232759453739655671910 ~2003
12327802391232780239111 ~2004
1232817431246563486310 ~2002
1232820383246564076710 ~2002
1232845079246569015910 ~2002
1232908811246581762310 ~2002
1232932523246586504710 ~2002
1232973779246594755910 ~2002
1233071783246614356710 ~2002
1233104063246620812710 ~2002
1233120191246624038310 ~2002
1233122903246624580710 ~2002
1233190859246638171910 ~2002
Exponent Prime Factor Digits Year
1233195251246639050310 ~2002
1233199043246639808710 ~2002
1233281513739968907910 ~2003
1233286643246657328710 ~2002
1233308291246661658310 ~2002
1233332531986666024910 ~2003
1233366671246673334310 ~2002
12333740711233374071111 ~2004
1233475319246695063910 ~2002
1233505943246701188710 ~2002
12335202072220336372711 ~2004
1233522137986817709710 ~2003
12335237472220342744711 ~2004
12335338391233533839111 ~2004
1233540851246708170310 ~2002
12335937373700781211111 ~2005
1233654503246730900710 ~2002
1233657863246731572710 ~2002
1233696983246739396710 ~2002
1233704113740222467910 ~2003
1233739313740243587910 ~2003
1233794117740276470310 ~2003
1233796523246759304710 ~2002
1233840131246768026310 ~2002
123389736710858296829712 ~2006
Exponent Prime Factor Digits Year
1233908471246781694310 ~2002
12339099593948511868911 ~2005
1233912083246782416710 ~2002
1233960863246792172710 ~2002
1233980123246796024710 ~2002
12340327131727645798311 ~2004
1234083419246816683910 ~2002
1234122671246824534310 ~2002
1234148759246829751910 ~2002
1234224863246844972710 ~2002
12342735434937094172111 ~2005
1234284743246856948710 ~2002
123429279128635592751312 ~2007
1234299061740579436710 ~2003
1234324979246864995910 ~2002
1234412411246882482310 ~2002
1234515013740709007910 ~2003
1234564151246912830310 ~2002
1234588499246917699910 ~2002
1234626551246925310310 ~2002
1234629661740777796710 ~2003
1234629923246925984710 ~2002
1234689383246937876710 ~2002
1234703111246940622310 ~2002
1234715903246943180710 ~2002
Home
4.724.182 digits
e-mail
25-04-13