Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
576816637346089982310 ~2001
576850019115370003910 ~1999
576870551115374110310 ~1999
576878723115375744710 ~1999
576880103115376020710 ~1999
576901097346140658310 ~2001
576907379115381475910 ~1999
576921733346153039910 ~2001
576931739115386347910 ~1999
576967337346180402310 ~2001
576977111115395422310 ~1999
577014359115402871910 ~1999
577028953346217371910 ~2001
577029127577029127110 ~2001
577054811115410962310 ~1999
577080071115416014310 ~1999
577089671115417934310 ~1999
577093817346256290310 ~2001
577103963115420792710 ~1999
5771255391038825970311 ~2002
577128371115425674310 ~1999
577137311115427462310 ~1999
577140673346284403910 ~2001
577148771461719016910 ~2001
577168093346300855910 ~2001
Exponent Prime Factor Digits Year
577237883115447576710 ~1999
577258777346355266310 ~2001
577282463115456492710 ~1999
577282703115456540710 ~1999
577318403115463680710 ~1999
577332187577332187110 ~2001
5773334891732000467111 ~2002
577335371115467074310 ~1999
577335721346401432710 ~2001
577353971115470794310 ~1999
577354223115470844710 ~1999
577359743115471948710 ~1999
577372297346423378310 ~2001
577386059115477211910 ~1999
577419257346451554310 ~2001
577423859115484771910 ~1999
577428977346457386310 ~2001
577444139115488827910 ~1999
577461971115492394310 ~1999
577474679115494935910 ~1999
577487621346492572710 ~2001
577497983115499596710 ~1999
577506521462005216910 ~2001
577521299115504259910 ~1999
5775251811732575543111 ~2002
Exponent Prime Factor Digits Year
577542481346525488710 ~2001
577550009462040007310 ~2001
577550507462040405710 ~2001
577566383115513276710 ~1999
577583063115516612710 ~1999
577591517346554910310 ~2001
577598891115519778310 ~1999
577606511115521302310 ~1999
577610543115522108710 ~1999
577612493346567495910 ~2001
577619219115523843910 ~1999
577620031924192049710 ~2002
577622231115524446310 ~1999
577649867462119893710 ~2001
577663993346598395910 ~2001
577674143115534828710 ~1999
577682999115536599910 ~1999
577687093346612255910 ~2001
577731659115546331910 ~1999
577737071115547414310 ~1999
577762151115552430310 ~1999
577763051115552610310 ~1999
577774871115554974310 ~1999
577774919115554983910 ~1999
577786679115557335910 ~1999
Exponent Prime Factor Digits Year
577788863115557772710 ~1999
577792343115558468710 ~1999
577794851115558970310 ~1999
577811183115562236710 ~1999
5778165179707317485711 ~2004
577819213346691527910 ~2001
577819439115563887910 ~1999
577824491115564898310 ~1999
577824539462259631310 ~2001
577833803115566760710 ~1999
577849763115569952710 ~1999
577873493809022890310 ~2002
577882933346729759910 ~2001
577886999115577399910 ~1999
577920503115584100710 ~1999
577932893346759735910 ~2001
577933801924694081710 ~2002
577941017462352813710 ~2001
577961159115592231910 ~1999
577963801346778280710 ~2001
577974599115594919910 ~1999
577994771115598954310 ~1999
577997053346798231910 ~2001
578000723115600144710 ~1999
578003953346802371910 ~2001
Home
5.307.017 digits
e-mail
26-01-11