Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
976326251195265250310 ~2001
976355123195271024710 ~2001
976358219195271643910 ~2001
976360631195272126310 ~2001
9764056271562249003311 ~2003
976468211195293642310 ~2001
97649863118162874536712 ~2006
976545191195309038310 ~2001
976591691195318338310 ~2001
976631723195326344710 ~2001
976648619195329723910 ~2001
976651979195330395910 ~2001
976704251195340850310 ~2001
976722997586033798310 ~2002
976737059195347411910 ~2001
9767532291367454520711 ~2003
976784279195356855910 ~2001
976801499195360299910 ~2001
976837817586102690310 ~2002
976848913586109347910 ~2002
976854743195370948710 ~2001
976868021586120812710 ~2002
976912679195382535910 ~2001
976922423195384484710 ~2001
976967039195393407910 ~2001
Exponent Prime Factor Digits Year
976989731195397946310 ~2001
977007623195401524710 ~2001
977030423195406084710 ~2001
977101591977101591110 ~2003
977173979195434795910 ~2001
977212451195442490310 ~2001
977213381586328028710 ~2002
977248037586348822310 ~2002
977271923195454384710 ~2001
977290511195458102310 ~2001
977303297586381978310 ~2002
977334419195466883910 ~2001
977383063977383063110 ~2003
9773878391759298110311 ~2004
977396801781917440910 ~2003
977485163195497032710 ~2001
977515811195503162310 ~2001
977518439195503687910 ~2001
977534219195506843910 ~2001
9775922634105887504711 ~2004
977612819195522563910 ~2001
977627597586576558310 ~2002
977658197586594918310 ~2002
977678473586607083910 ~2002
977692871782154296910 ~2003
Exponent Prime Factor Digits Year
977742497586645498310 ~2002
977787911195557582310 ~2001
977808113586684867910 ~2002
977861231195572246310 ~2001
977878799195575759910 ~2001
977966219195593243910 ~2001
977972341586783404710 ~2002
978013763195602752710 ~2001
978029963195605992710 ~2001
978057191195611438310 ~2001
978100043195620008710 ~2001
9781977114890988555111 ~2005
978223237586933942310 ~2002
978257471195651494310 ~2001
978290051195658010310 ~2001
978300539195660107910 ~2001
978311753586987051910 ~2002
9783262637043949093711 ~2005
978326903195665380710 ~2001
978402059195680411910 ~2001
9784063697631569678311 ~2005
978417431195683486310 ~2001
978451931195690386310 ~2001
9784780312544042880711 ~2004
978500981587100588710 ~2002
Exponent Prime Factor Digits Year
978503783195700756710 ~2001
9786291492348709957711 ~2004
978675739978675739110 ~2003
978675851195735170310 ~2001
978681779195736355910 ~2001
978713831195742766310 ~2001
978749677587249806310 ~2002
978768431195753686310 ~2001
9787709292349050229711 ~2004
978806903195761380710 ~2001
978820943195764188710 ~2001
978841511195768302310 ~2001
978850387978850387110 ~2003
978856211195771242310 ~2001
978864779195772955910 ~2001
978876911195775382310 ~2001
978908921783127136910 ~2003
978916331195783266310 ~2001
978924553587354731910 ~2002
9789367794698896539311 ~2005
978971353587382811910 ~2002
9789750612153745134311 ~2004
979030463195806092710 ~2001
979071683195814336710 ~2001
979115183195823036710 ~2001
Home
4.768.925 digits
e-mail
25-05-04