Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1105868999221173799910 ~2002
1105869263221173852710 ~2002
11059113796414285998311 ~2005
1105945343221189068710 ~2002
1105948931884759144910 ~2003
1105964593663578755910 ~2003
1105978631221195726310 ~2002
11060063878184447263911 ~2005
1106013851221202770310 ~2002
1106023343221204668710 ~2002
1106074031221214806310 ~2002
1106077811221215562310 ~2002
1106078639221215727910 ~2002
1106086799221217359910 ~2002
1106134511221226902310 ~2002
11061882472654851792911 ~2004
1106281271221256254310 ~2002
1106284093663770455910 ~2003
1106356271221271254310 ~2002
1106408531221281706310 ~2002
1106460779221292155910 ~2002
1106497237663898342310 ~2003
1106537483221307496710 ~2002
1106543723221308744710 ~2002
1106589371221317874310 ~2002
Exponent Prime Factor Digits Year
1106607251221321450310 ~2002
1106657939221331587910 ~2002
1106666471221333294310 ~2002
1106845739221369147910 ~2002
1106876777664126066310 ~2003
11069253191992465574311 ~2004
1106939243221387848710 ~2002
110695954314390474059112 ~2006
1106975003221395000710 ~2002
1106975183221395036710 ~2002
1107060937664236562310 ~2003
1107086159221417231910 ~2002
11071197771549967687911 ~2004
1107189263221437852710 ~2002
1107202391221440478310 ~2002
1107266003221453200710 ~2002
1107267659221453531910 ~2002
1107268559221453711910 ~2002
110730822116609623315112 ~2006
1107362411885889928910 ~2003
11073672711993261087911 ~2004
11073999132657759791311 ~2004
110740509713953304222312 ~2006
1107481283221496256710 ~2002
1107492131221498426310 ~2002
Exponent Prime Factor Digits Year
1107492521664495512710 ~2003
11075397911107539791111 ~2003
1107605651221521130310 ~2002
1107616883221523376710 ~2002
1107618023221523604710 ~2002
1107636899221527379910 ~2002
1107640883221528176710 ~2002
1107648203221529640710 ~2002
11076703371550738471911 ~2004
1107674339221534867910 ~2002
1107708419221541683910 ~2002
1107709643221541928710 ~2002
11077262711107726271111 ~2003
1107741443221548288710 ~2002
1107743381664646028710 ~2003
11078049611772487937711 ~2004
1107809321664685592710 ~2003
1107834407886267525710 ~2003
1107849593664709755910 ~2003
1107887723221577544710 ~2002
1107897299221579459910 ~2002
1107926783221585356710 ~2002
1107934571221586914310 ~2002
1107959423221591884710 ~2002
1107995159221599031910 ~2002
Exponent Prime Factor Digits Year
1108002503221600500710 ~2002
1108065971221613194310 ~2002
1108079123221615824710 ~2002
1108109777664865866310 ~2003
1108110863221622172710 ~2002
11081322174210902424711 ~2005
11081687234654308636711 ~2005
1108196113664917667910 ~2003
1108286111221657222310 ~2002
1108304003221660800710 ~2002
1108356563221671312710 ~2002
1108385783221677156710 ~2002
1108397819221679563910 ~2002
1108480739221696147910 ~2002
1108491017665094610310 ~2003
1108534211221706842310 ~2002
1108622171221724434310 ~2002
1108686959221737391910 ~2002
1108690811221738162310 ~2002
1108705523221741104710 ~2002
1108706759221741351910 ~2002
1108720139221744027910 ~2002
1108751459221750291910 ~2002
1108759103221751820710 ~2002
1108799519221759903910 ~2002
Home
4.768.925 digits
e-mail
25-05-04