Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
11825402112128572379911 ~2004
11825429711892068753711 ~2004
1182559019236511803910 ~2002
118259089111589390731912 ~2006
1182620639236524127910 ~2002
1182671279236534255910 ~2002
118274486927203131987112 ~2007
1182759233709655539910 ~2003
1182796631946237304910 ~2003
1182808943236561788710 ~2002
1182822731236564546310 ~2002
1182830963236566192710 ~2002
1182844979236568995910 ~2002
1182880373709728223910 ~2003
1182881351236576270310 ~2002
1182952679236590535910 ~2002
1183001957709801174310 ~2003
1183015877946412701710 ~2003
1183121677709873006310 ~2003
1183163903236632780710 ~2002
1183310783236662156710 ~2002
1183312379236662475910 ~2002
1183340461710004276710 ~2003
1183352843236670568710 ~2002
1183419953710051971910 ~2003
Exponent Prime Factor Digits Year
1183434383236686876710 ~2002
1183483991236696798310 ~2002
1183488731236697746310 ~2002
1183490723236698144710 ~2002
1183517063236703412710 ~2002
1183519439236703887910 ~2002
1183575119236715023910 ~2002
1183614011236722802310 ~2002
1183615739236723147910 ~2002
1183722973710233783910 ~2003
1183738691236747738310 ~2002
1183748759236749751910 ~2002
1183758431236751686310 ~2002
1183778471236755694310 ~2002
11838874991183887499111 ~2004
1183907909947126327310 ~2003
11839318075682872673711 ~2005
1183970891236794178310 ~2002
1183974119236794823910 ~2002
1183980851236796170310 ~2002
1184021123236804224710 ~2002
11840224211894435873711 ~2004
1184037983236807596710 ~2002
1184063711236812742310 ~2002
1184132879236826575910 ~2002
Exponent Prime Factor Digits Year
1184184383236836876710 ~2002
1184210603236842120710 ~2002
1184258423236851684710 ~2002
1184267377710560426310 ~2003
1184301791236860358310 ~2002
118430231314922209143912 ~2006
1184331461710598876710 ~2003
1184337023236867404710 ~2002
1184342651236868530310 ~2002
11843585572842460536911 ~2005
1184377223236875444710 ~2002
1184409557710645734310 ~2003
1184425223236885044710 ~2002
1184450341710670204710 ~2003
1184470271236894054310 ~2002
1184627051236925410310 ~2002
1184766893710860135910 ~2003
1184784563236956912710 ~2002
1184790001710874000710 ~2003
1184793941710876364710 ~2003
1184799233710879539910 ~2003
1184854019236970803910 ~2002
1184868071236973614310 ~2002
1184883431236976686310 ~2002
11848845311184884531111 ~2004
Exponent Prime Factor Digits Year
1184912831236982566310 ~2002
11849179271184917927111 ~2004
1184946023236989204710 ~2002
118496749114219609892112 ~2006
118500840113983099131912 ~2006
1185017243237003448710 ~2002
1185023159237004631910 ~2002
1185104759237020951910 ~2002
1185112079237022415910 ~2002
1185146723237029344710 ~2002
1185152471237030494310 ~2002
1185173939237034787910 ~2002
1185203471237040694310 ~2002
1185212291237042458310 ~2002
1185218711948174968910 ~2003
11852350131659329018311 ~2004
1185259571237051914310 ~2002
1185288179237057635910 ~2002
1185334079237066815910 ~2002
1185355013711213007910 ~2003
1185389951237077990310 ~2002
1185431069948344855310 ~2003
1185521723237104344710 ~2002
1185530999237106199910 ~2002
1185565487948452389710 ~2003
Home
4.724.182 digits
e-mail
25-04-13