Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1073516413644109847910 ~2003
1073571731214714346310 ~2002
10736996233650578718311 ~2005
1073768747859014997710 ~2003
1073777759859022207310 ~2003
1073786327859029061710 ~2003
10738115591932860806311 ~2004
1073847623214769524710 ~2002
1073854823214770964710 ~2002
1073890373644334223910 ~2003
10738910095799011448711 ~2005
1073894453644336671910 ~2003
1073899523214779904710 ~2002
1073917811214783562310 ~2002
1073920517644352310310 ~2003
1073929511214785902310 ~2002
1073963063214792612710 ~2002
1073974283214794856710 ~2002
1073976443214795288710 ~2002
1073988137859190509710 ~2003
1074068173644440903910 ~2003
1074093599214818719910 ~2002
1074110759214822151910 ~2002
10741164431074116443111 ~2003
1074120083214824016710 ~2002
Exponent Prime Factor Digits Year
1074127333644476399910 ~2003
10741362431074136243111 ~2003
1074160343214832068710 ~2002
1074160931214832186310 ~2002
1074170879859336703310 ~2003
1074183401644510040710 ~2003
1074212819214842563910 ~2002
1074247469859397975310 ~2003
1074249443214849888710 ~2002
1074252653644551591910 ~2003
1074304277644582566310 ~2003
1074320939214864187910 ~2002
1074334511214866902310 ~2002
10743519975156889585711 ~2005
1074393011214878602310 ~2002
10744779532578747087311 ~2004
1074499117644699470310 ~2003
10745554971504377695911 ~2004
1074568991214913798310 ~2002
1074571703214914340710 ~2002
1074641531214928306310 ~2002
1074656041644793624710 ~2003
1074657443214931488710 ~2002
1074679943214935988710 ~2002
1074682033644809219910 ~2003
Exponent Prime Factor Digits Year
1074717613644830567910 ~2003
1074721751214944350310 ~2002
10747280216663313730311 ~2005
1074731761644839056710 ~2003
1074735251859788200910 ~2003
1074754697859803757710 ~2003
1074805079214961015910 ~2002
1074871139214974227910 ~2002
1074878351214975670310 ~2002
1074928979214985795910 ~2002
10749698711934945767911 ~2004
1074999671214999934310 ~2002
1075068971860055176910 ~2003
1075097591215019518310 ~2002
1075195501645117300710 ~2003
1075206541645123924710 ~2003
1075206793645124075910 ~2003
10752074333440663785711 ~2004
1075221131215044226310 ~2002
1075222751215044550310 ~2002
1075224659215044931910 ~2002
1075232003215046400710 ~2002
10752620774301048308111 ~2005
1075346711215069342310 ~2002
1075347011215069402310 ~2002
Exponent Prime Factor Digits Year
1075354919215070983910 ~2002
1075358237645214942310 ~2003
1075418651215083730310 ~2002
1075448723215089744710 ~2002
1075485973645291583910 ~2003
1075559363215111872710 ~2002
1075625543215125108710 ~2002
1075643351215128670310 ~2002
1075677131215135426310 ~2002
1075683419215136683910 ~2002
1075684199215136839910 ~2002
1075689479215137895910 ~2002
1075693001860554400910 ~2003
1075716311215143262310 ~2002
1075772531215154506310 ~2002
1075797059215159411910 ~2002
1075841831215168366310 ~2002
1075847879215169575910 ~2002
1075882739215176547910 ~2002
10758864112797304668711 ~2004
1075899421645539652710 ~2003
1075912823215182564710 ~2002
1075955879215191175910 ~2002
1075969859215193971910 ~2002
1076085119215217023910 ~2002
Home
4.768.925 digits
e-mail
25-05-04