Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
544638179108927635910 ~1999
544646699108929339910 ~1999
544683911108936782310 ~1999
544686911108937382310 ~1999
544687211108937442310 ~1999
544692719108938543910 ~1999
544713083108942616710 ~1999
544717931108943586310 ~1999
544725683108945136710 ~1999
544730363108946072710 ~1999
544743203108948640710 ~1999
544752431108950486310 ~1999
544764359108952871910 ~1999
544773419108954683910 ~1999
544782863108956572710 ~1999
544786103108957220710 ~1999
544808057762731279910 ~2001
544821983108964396710 ~1999
544842731108968546310 ~1999
544854823871767716910 ~2001
544854851108970970310 ~1999
544886999108977399910 ~1999
544890713326934427910 ~2000
544895363108979072710 ~1999
544897673326938603910 ~2000
Exponent Prime Factor Digits Year
544926887435941509710 ~2001
544933451108986690310 ~1999
544940003108988000710 ~1999
544961519108992303910 ~1999
544968299108993659910 ~1999
5450044572507020502311 ~2003
545015963109003192710 ~1999
545034643545034643110 ~2001
545046059109009211910 ~1999
545061551109012310310 ~1999
545124743109024948710 ~1999
545148881327089328710 ~2000
545153351109030670310 ~1999
545166179109033235910 ~1999
545172161327103296710 ~2000
545175443109035088710 ~1999
545178659109035731910 ~1999
545180711109036142310 ~1999
545185559981334006310 ~2002
545189891109037978310 ~1999
545198411109039682310 ~1999
545200037327120022310 ~2000
545209391109041878310 ~1999
545229383109045876710 ~1999
545244851109048970310 ~1999
Exponent Prime Factor Digits Year
545258801327155280710 ~2000
545276279109055255910 ~1999
545294759109058951910 ~1999
545296151109059230310 ~1999
545311619109062323910 ~1999
545360111109072022310 ~1999
545374007436299205710 ~2001
545380343109076068710 ~1999
545431619109086323910 ~1999
545433599109086719910 ~1999
545434559109086911910 ~1999
545479399545479399110 ~2001
545480723109096144710 ~1999
54548406768949186068912 ~2006
545503943109100788710 ~1999
545507113327304267910 ~2000
545524103109104820710 ~1999
545531579109106315910 ~1999
545537831109107566310 ~1999
545554561327332736710 ~2000
545560019109112003910 ~1999
545562119109112423910 ~1999
545562431109112486310 ~1999
545565611436452488910 ~2001
545565637872905019310 ~2001
Exponent Prime Factor Digits Year
545599757436479805710 ~2001
545612999109122599910 ~1999
545614519982106134310 ~2002
545627783109125556710 ~1999
545640377436512301710 ~2001
545645953327387571910 ~2000
5456642991309594317711 ~2002
545665283109133056710 ~1999
545667803109133560710 ~1999
545670197436536157710 ~2001
545709551109141910310 ~1999
545717219109143443910 ~1999
545718841327431304710 ~2000
545723641873157825710 ~2001
545747771109149554310 ~1999
545793239109158647910 ~1999
545797943109159588710 ~1999
545833859109166771910 ~1999
545838817327503290310 ~2000
545860739109172147910 ~1999
545876711109175342310 ~1999
545899199109179839910 ~1999
545920139109184027910 ~1999
545933471109186694310 ~1999
545952791109190558310 ~1999
Home
5.307.017 digits
e-mail
26-01-11