Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1014378983202875796710 ~2001
1014448091202889618310 ~2001
1014468131202893626310 ~2001
1014473711202894742310 ~2001
10144846317304289343311 ~2005
1014508763202901752710 ~2001
1014519491202903898310 ~2001
1014531359202906271910 ~2001
10145900091420426012711 ~2003
1014629579202925915910 ~2001
1014729563202945912710 ~2001
1014740399202948079910 ~2001
1014744179202948835910 ~2001
10147617892435428293711 ~2004
1014764171202952834310 ~2001
10147900971420706135911 ~2003
1014807203202961440710 ~2001
1014909743202981948710 ~2001
1014938081608962848710 ~2002
1014951779202990355910 ~2001
1014997871202999574310 ~2001
1015030463203006092710 ~2001
1015084121812067296910 ~2003
1015110599203022119910 ~2001
1015125311203025062310 ~2001
Exponent Prime Factor Digits Year
1015170337609102202310 ~2002
1015196921609118152710 ~2002
1015208231203041646310 ~2001
1015234739203046947910 ~2001
10152566335685437144911 ~2005
1015263311203052662310 ~2001
1015270859203054171910 ~2001
1015281941609169164710 ~2002
1015323059203064611910 ~2001
1015359797609215878310 ~2003
1015404443203080888710 ~2001
1015426799203085359910 ~2001
1015438331203087666310 ~2001
1015439701609263820710 ~2003
1015456153609273691910 ~2003
1015555043203111008710 ~2001
1015617041609370224710 ~2003
1015632119203126423910 ~2001
1015658411812526728910 ~2003
1015683637609410182310 ~2003
1015684223203136844710 ~2001
10156862931421960810311 ~2003
1015691399203138279910 ~2001
1015693223203138644710 ~2001
1015708019203141603910 ~2001
Exponent Prime Factor Digits Year
1015716623203143324710 ~2001
1015755683203151136710 ~2001
1015758323203151664710 ~2001
1015758899812607119310 ~2003
1015784879203156975910 ~2001
1015801511203160302310 ~2001
10159013892438163333711 ~2004
1015910039203182007910 ~2001
101596528910362845947912 ~2006
1015980659203196131910 ~2001
1016044439203208887910 ~2001
1016110691203222138310 ~2001
1016123519203224703910 ~2001
1016131631203226326310 ~2001
10162453571625992571311 ~2004
1016267723203253544710 ~2001
10163194574065277828111 ~2005
10163689435691666080911 ~2005
1016387819203277563910 ~2001
1016446523203289304710 ~2001
1016467601813174080910 ~2003
1016544541609926724710 ~2003
1016548901609929340710 ~2003
1016571971203314394310 ~2001
1016582939203316587910 ~2001
Exponent Prime Factor Digits Year
1016593619203318723910 ~2001
1016634191203326838310 ~2001
1016668259203333651910 ~2001
1016687519203337503910 ~2001
1016692619203338523910 ~2001
1016737199813389759310 ~2003
1016753261610051956710 ~2003
101677318914438179283912 ~2006
1016787851203357570310 ~2001
1016866751203373350310 ~2001
1016873303203374660710 ~2001
1016877671813502136910 ~2003
1016882579203376515910 ~2001
1016900723203380144710 ~2001
1016909219203381843910 ~2001
1016921293610152775910 ~2003
1016943491203388698310 ~2001
1016969951203393990310 ~2001
10169875631016987563111 ~2003
10170137594881666043311 ~2005
1017016811203403362310 ~2001
1017052499203410499910 ~2001
1017061739203412347910 ~2001
1017069611203413922310 ~2001
1017109871813687896910 ~2003
Home
4.724.182 digits
e-mail
25-04-13