Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
981406403196281280710 ~2001
9814326911570292305711 ~2003
981459131196291826310 ~2001
981459191196291838310 ~2001
981491411196298282310 ~2001
981492359196298471910 ~2001
981526439196305287910 ~2001
981545891196309178310 ~2001
981547223196309444710 ~2001
981566843196313368710 ~2001
981571403196314280710 ~2001
981572279196314455910 ~2001
981606023196321204710 ~2001
981620879785296703310 ~2003
981649013588989407910 ~2002
981668783196333756710 ~2001
981692759196338551910 ~2001
981720119196344023910 ~2001
981723059196344611910 ~2001
981783251196356650310 ~2001
9818078292159977223911 ~2004
981822119196364423910 ~2001
981839549785471639310 ~2003
981850871196370174310 ~2001
981892823196378564710 ~2001
Exponent Prime Factor Digits Year
981914819196382963910 ~2001
981922283196384456710 ~2001
981943331196388666310 ~2001
981952757785562205710 ~2003
9819700392356728093711 ~2004
9819754331571160692911 ~2003
981992699196398539910 ~2001
982015403196403080710 ~2001
982018831982018831110 ~2003
982054211196410842310 ~2001
982078439196415687910 ~2001
982100279196420055910 ~2001
982212817589327690310 ~2002
9822299812946689943111 ~2004
982264163196452832710 ~2001
982276979196455395910 ~2001
982311299196462259910 ~2001
982322171196464434310 ~2001
982377839196475567910 ~2001
982442819196488563910 ~2001
982501139196500227910 ~2001
982529299982529299110 ~2003
982546693589528015910 ~2002
982574399196514879910 ~2001
982584611196516922310 ~2001
Exponent Prime Factor Digits Year
982604921786083936910 ~2003
982615103196523020710 ~2001
982636331196527266310 ~2001
982664519196532903910 ~2001
982685003196537000710 ~2001
982697399196539479910 ~2001
982715117589629070310 ~2002
982845491196569098310 ~2001
982904063196580812710 ~2001
982919603196583920710 ~2001
9830213633145668361711 ~2004
983082671196616534310 ~2001
983116801589870080710 ~2002
983118659196623731910 ~2001
9831441431573030628911 ~2003
983161031196632206310 ~2001
983176163196635232710 ~2001
983217143196643428710 ~2001
983237459196647491910 ~2001
983258063196651612710 ~2001
983265917589959550310 ~2002
983266703196653340710 ~2001
9832865897079663440911 ~2005
9833645111770056119911 ~2004
98338031932451550527112 ~2007
Exponent Prime Factor Digits Year
983382371196676474310 ~2001
983392451196678490310 ~2001
983393399196678679910 ~2001
9834022211573443553711 ~2003
983407091196681418310 ~2001
983420423196684084710 ~2001
983428559196685711910 ~2001
983438171196687634310 ~2001
983455103196691020710 ~2001
983482463196696492710 ~2001
983594153590156491910 ~2002
983623679786898943310 ~2003
983640457590184274310 ~2002
983649059196729811910 ~2001
983669783196733956710 ~2001
983693111786954488910 ~2003
983693351196738670310 ~2001
983729639196745927910 ~2001
983769959196753991910 ~2001
983777939196755587910 ~2001
983794319196758863910 ~2001
983800859196760171910 ~2001
983801939196760387910 ~2001
983806753590284051910 ~2002
983820947787056757710 ~2003
Home
4.768.925 digits
e-mail
25-05-04