Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
845730239169146047910 ~2001
845764547676611637710 ~2002
845765939676612751310 ~2002
8457661092537298327111 ~2004
845777099169155419910 ~2001
845781449676625159310 ~2002
845785991169157198310 ~2001
845818691169163738310 ~2001
845862359169172471910 ~2001
845917619169183523910 ~2001
845919479169183895910 ~2001
845922491169184498310 ~2001
845986499169197299910 ~2001
846015011169203002310 ~2001
846049643169209928710 ~2001
846082397507649438310 ~2002
846134171169226834310 ~2001
846144419169228883910 ~2001
846156539169231307910 ~2001
846267431169253486310 ~2001
846295031169259006310 ~2001
8463480531184887274311 ~2003
846373937677099149710 ~2002
846415679169283135910 ~2001
846480839169296167910 ~2001
Exponent Prime Factor Digits Year
846486653507891991910 ~2002
846502463169300492710 ~2001
846522779677218223310 ~2002
846573083169314616710 ~2001
846573779169314755910 ~2001
8466180011354588801711 ~2003
846621791169324358310 ~2001
8466258492031902037711 ~2003
846657023169331404710 ~2001
846666263169333252710 ~2001
846677063169335412710 ~2001
846680111169336022310 ~2001
846684673508010803910 ~2002
846720821508032492710 ~2002
846765131169353026310 ~2001
846779123169355824710 ~2001
846802679169360535910 ~2001
846810719169362143910 ~2001
846819073508091443910 ~2002
846908957508145374310 ~2002
8469110812710115459311 ~2004
846944243169388848710 ~2001
846947039169389407910 ~2001
846967391169393478310 ~2001
846967477508180486310 ~2002
Exponent Prime Factor Digits Year
846971663169394332710 ~2001
846972179169394435910 ~2001
846995537677596429710 ~2002
847049783169409956710 ~2001
847055399169411079910 ~2001
847057643169411528710 ~2001
847058603169411720710 ~2001
847083983169416796710 ~2001
847086731169417346310 ~2001
847120381508272228710 ~2002
847127951169425590310 ~2001
847143629677714903310 ~2002
847152983169430596710 ~2001
847154831169430966310 ~2001
847168733508301239910 ~2002
847178723169435744710 ~2001
847184963169436992710 ~2001
847186643169437328710 ~2001
847192103169438420710 ~2001
847196759677757407310 ~2002
8472070437624863387111 ~2005
847228859169445771910 ~2001
8473163571186242899911 ~2003
847341959169468391910 ~2001
847345871169469174310 ~2001
Exponent Prime Factor Digits Year
847348343169469668710 ~2001
847369931169473986310 ~2001
847388821508433292710 ~2002
847432193508459315910 ~2002
847467143169493428710 ~2001
847473637508484182310 ~2002
8475109012712034883311 ~2004
847521973508513183910 ~2002
847536143169507228710 ~2001
8475432731864595200711 ~2003
847563539169512707910 ~2001
847607231169521446310 ~2001
847628843169525768710 ~2001
847646759169529351910 ~2001
847647743169529548710 ~2001
847653179169530635910 ~2001
847664813508598887910 ~2002
847672151169534430310 ~2001
847721111169544222310 ~2001
847749817508649890310 ~2002
847788803169557760710 ~2001
847829483169565896710 ~2001
847839851169567970310 ~2001
847850039169570007910 ~2001
847862303169572460710 ~2001
Home
4.768.925 digits
e-mail
25-05-04