Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
844017143168803428710 ~2001
844018379168803675910 ~2001
844023731168804746310 ~2001
844035821506421492710 ~2002
844038683168807736710 ~2001
844056413506433847910 ~2002
8440624811856937458311 ~2003
844075871168815174310 ~2001
844081103168816220710 ~2001
8440891573376356628111 ~2004
844099043168819808710 ~2001
844116503168823300710 ~2001
844118039168823607910 ~2001
844127759168825551910 ~2001
844148939168829787910 ~2001
8441522775909065939111 ~2004
844153133506491879910 ~2002
844188731168837746310 ~2001
844192463168838492710 ~2001
844194419168838883910 ~2001
844203779168840755910 ~2001
844237679168847535910 ~2001
844237871168847574310 ~2001
844264643168852928710 ~2001
844274003168854800710 ~2001
Exponent Prime Factor Digits Year
844289483168857896710 ~2001
844312019168862403910 ~2001
844343891168868778310 ~2001
84434512919588806992912 ~2006
844395269675516215310 ~2002
844400951168880190310 ~2001
8444050072195453018311 ~2003
844422503168884500710 ~2001
844431761506659056710 ~2002
844440119168888023910 ~2001
8444629032026710967311 ~2003
844468511168893702310 ~2001
844470719168894143910 ~2001
844491731168898346310 ~2001
844534199168906839910 ~2001
844536971168907394310 ~2001
8445510311351281649711 ~2003
844552811168910562310 ~2001
844565159675652127310 ~2002
844646417506787850310 ~2002
8446564693378625876111 ~2004
8446588971182522455911 ~2003
844741057506844634310 ~2002
844765979168953195910 ~2001
844766339168953267910 ~2001
Exponent Prime Factor Digits Year
844774883168954976710 ~2001
8447799891182691984711 ~2003
844785737506871442310 ~2002
844792451168958490310 ~2001
844802723168960544710 ~2001
844844771168968954310 ~2001
844861813506917087910 ~2002
844865291168973058310 ~2001
844884503168976900710 ~2001
844887781506932668710 ~2002
844888313506932987910 ~2002
844904279168980855910 ~2001
844910233506946139910 ~2002
844939553506963731910 ~2002
8449402211351904353711 ~2003
845001323169000264710 ~2001
845004781507002868710 ~2002
845009603169001920710 ~2001
845021321507012792710 ~2002
845097023169019404710 ~2001
845101343169020268710 ~2001
845123351169024670310 ~2001
845130623169026124710 ~2001
845132177676105741710 ~2002
845146283169029256710 ~2001
Exponent Prime Factor Digits Year
845169683169033936710 ~2001
8451708472028410032911 ~2003
845208869676167095310 ~2002
8452239973380895988111 ~2004
845227151169045430310 ~2001
8452327672197605194311 ~2003
845282771169056554310 ~2001
845283671169056734310 ~2001
845285219169057043910 ~2001
845295953507177571910 ~2002
845308691676246952910 ~2002
845316623169063324710 ~2001
845317859169063571910 ~2001
845346779169069355910 ~2001
8453840472028921712911 ~2003
845426759169085351910 ~2001
845448119169089623910 ~2001
845451421507270852710 ~2002
8455022111352803537711 ~2003
845505911169101182310 ~2001
845533163169106632710 ~2001
845542751169108550310 ~2001
8456308332536892499111 ~2004
845711039169142207910 ~2001
845720339169144067910 ~2001
Home
4.768.925 digits
e-mail
25-05-04