Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
815819423163163884710 ~2001
815865839163173167910 ~2001
815880179163176035910 ~2001
815913803163182760710 ~2001
815935061652748048910 ~2002
815946251163189250310 ~2001
815985671163197134310 ~2001
816048251163209650310 ~2001
816056243163211248710 ~2001
816136523163227304710 ~2001
816167879163233575910 ~2001
8161754172448526251111 ~2003
816208201489724920710 ~2002
816242363163248472710 ~2001
816291557489774934310 ~2002
816293053489775831910 ~2002
816314951163262990310 ~2001
816335099163267019910 ~2001
8163772972449131891111 ~2003
816420119163284023910 ~2001
816426899163285379910 ~2001
816509231163301846310 ~2001
816521963163304392710 ~2001
816535931163307186310 ~2001
8165408478655332978311 ~2005
Exponent Prime Factor Digits Year
816548353489929011910 ~2002
8165689931796451784711 ~2003
816574403163314880710 ~2001
81664480931195831703912 ~2006
816706199163341239910 ~2001
8167557431306809188911 ~2003
816761639163352327910 ~2001
816769991163353998310 ~2001
816771793490063075910 ~2002
816774191163354838310 ~2001
816796451163359290310 ~2001
816818291163363658310 ~2001
816864599163372919910 ~2001
816882797490129678310 ~2002
816895571163379114310 ~2001
816897239163379447910 ~2001
816898813490139287910 ~2002
816922241490153344710 ~2002
816939899163387979910 ~2001
816951419163390283910 ~2001
8169687591960725021711 ~2003
816969623163393924710 ~2001
816976703163395340710 ~2001
816984659163396931910 ~2001
817048019163409603910 ~2001
Exponent Prime Factor Digits Year
817065779163413155910 ~2001
817070183163414036710 ~2001
817095313490257187910 ~2002
817114657490268794310 ~2002
817123397490274038310 ~2002
817143731163428746310 ~2001
817155593490293355910 ~2002
8172027611307524417711 ~2003
8172044411307527105711 ~2003
817205009653764007310 ~2002
817212251163442450310 ~2001
817240751163448150310 ~2001
817245179163449035910 ~2001
817255451163451090310 ~2001
817260491163452098310 ~2001
817263563163452712710 ~2001
817283393490370035910 ~2002
817319771163463954310 ~2001
817406459163481291910 ~2001
817413743163482748710 ~2001
817459733490475839910 ~2002
817484231163496846310 ~2001
817485923163497184710 ~2001
8174957512125488952711 ~2003
817510103163502020710 ~2001
Exponent Prime Factor Digits Year
817547039163509407910 ~2001
817575299163515059910 ~2001
817576553490545931910 ~2002
817616099163523219910 ~2001
817622999163524599910 ~2001
817624679163524935910 ~2001
817630937490578562310 ~2002
817638323163527664710 ~2001
817641491163528298310 ~2001
817643003163528600710 ~2001
8176500771962360184911 ~2003
817713371163542674310 ~2001
817719671163543934310 ~2001
817751843163550368710 ~2001
817762019163552403910 ~2001
817772519163554503910 ~2001
817840871163568174310 ~2001
817875911163575182310 ~2001
817900199163580039910 ~2001
817920613490752367910 ~2002
817999079163599815910 ~2001
818027279163605455910 ~2001
8180772291145308120711 ~2003
818081711163616342310 ~2001
818099819163619963910 ~2001
Home
4.768.925 digits
e-mail
25-05-04