Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
709417883141883576710 ~2000
7094410797378187221711 ~2004
709475423141895084710 ~2000
709515797425709478310 ~2001
709528871141905774310 ~2000
709536983141907396710 ~2000
709570331141914066310 ~2000
709613819141922763910 ~2000
709620623141924124710 ~2000
709692983141938596710 ~2000
709725899141945179910 ~2000
709731959141946391910 ~2000
709733099141946619910 ~2000
709744559141948911910 ~2000
709803551141960710310 ~2000
709807271141961454310 ~2000
709809679709809679110 ~2002
709834451141966890310 ~2000
709856597425913958310 ~2001
7098927914685292420711 ~2004
709894897425936938310 ~2001
709898411141979682310 ~2000
709908971141981794310 ~2000
709939931141987986310 ~2000
709978933425987359910 ~2001
Exponent Prime Factor Digits Year
709987261425992356710 ~2001
7099996138945995123911 ~2005
710003171568002536910 ~2002
710017499142003499910 ~2000
710026463142005292710 ~2000
7100467931136074868911 ~2002
710067593994094630310 ~2002
710090351142018070310 ~2000
710097257426058354310 ~2001
710102303142020460710 ~2000
710106179142021235910 ~2000
7101138532272364329711 ~2003
710119171710119171110 ~2002
710119211142023842310 ~2000
710178263142035652710 ~2000
710183833426110299910 ~2001
710198231142039646310 ~2000
710219291142043858310 ~2000
710231339142046267910 ~2000
710278979142055795910 ~2000
7103088131562679388711 ~2003
710313011142062602310 ~2000
710319611142063922310 ~2000
710336639142067327910 ~2000
7103581991704859677711 ~2003
Exponent Prime Factor Digits Year
710402663142080532710 ~2000
7104072611136651617711 ~2002
710412887568330309710 ~2002
710428559568342847310 ~2002
710429701426257820710 ~2001
710442311142088462310 ~2000
710443043142088608710 ~2000
710460911142092182310 ~2000
710466299142093259910 ~2000
710489693426293815910 ~2001
710490899142098179910 ~2000
710506859142101371910 ~2000
7105520271705324864911 ~2003
710570921426342552710 ~2001
710600711142120142310 ~2000
710615063142123012710 ~2000
710627891142125578310 ~2000
710630351142126070310 ~2000
710630759142126151910 ~2000
7106765991279217878311 ~2002
710715779142143155910 ~2000
710722139142144427910 ~2000
710724671142144934310 ~2000
710764751142152950310 ~2000
710804309568643447310 ~2002
Exponent Prime Factor Digits Year
710807063142161412710 ~2000
710810063142162012710 ~2000
710823479142164695910 ~2000
710832307710832307110 ~2002
710855363142171072710 ~2000
7108592093412124203311 ~2004
710868419142173683910 ~2000
710906921568725536910 ~2002
710915423142183084710 ~2000
710917703142183540710 ~2000
7109240411564032890311 ~2003
710947439142189487910 ~2000
710976251142195250310 ~2000
7109930835830143280711 ~2004
711007523142201504710 ~2000
711107843142221568710 ~2000
711107981426664788710 ~2001
7111282332133384699111 ~2003
711158291142231658310 ~2000
711168911142233782310 ~2000
711179431711179431110 ~2002
711182039142236407910 ~2000
711237539142247507910 ~2000
711248963142249792710 ~2000
7113101572702978596711 ~2003
Home
4.768.925 digits
e-mail
25-05-04