Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
795822197636657757710 ~2002
795843131159168626310 ~2001
795861119159172223910 ~2001
795870431159174086310 ~2001
795894929636715943310 ~2002
795967499159193499910 ~2001
795978119159195623910 ~2001
795985241477591144710 ~2002
795986003159197200710 ~2001
796007137477604282310 ~2002
796011803159202360710 ~2001
796052303159210460710 ~2001
796124471159224894310 ~2001
796125131159225026310 ~2001
7961394177642938403311 ~2005
796170421477702252710 ~2002
796172159159234431910 ~2001
796176071159235214310 ~2001
796184639159236927910 ~2001
796227671159245534310 ~2001
796229639636983711310 ~2002
796265843159253168710 ~2001
796269923159253984710 ~2001
7962761812388828543111 ~2003
796276511159255302310 ~2001
Exponent Prime Factor Digits Year
796283903159256780710 ~2001
796284323159256864710 ~2001
796294319159258863910 ~2001
796295099159259019910 ~2001
796295231159259046310 ~2001
796305677477783406310 ~2002
796319759159263951910 ~2001
796337771159267554310 ~2001
796356299159271259910 ~2001
796403759159280751910 ~2001
7964099273822767649711 ~2004
796418879159283775910 ~2001
796425923159285184710 ~2001
7966086231911860695311 ~2003
796648799159329759910 ~2001
796679951159335990310 ~2001
796682063159336412710 ~2001
796691039159338207910 ~2001
796708499159341699910 ~2001
796737743159347548710 ~2001
796755611159351122310 ~2001
796783451159356690310 ~2001
796805231159361046310 ~2001
796815317637452253710 ~2002
796869791159373958310 ~2001
Exponent Prime Factor Digits Year
796878311159375662310 ~2001
796883051159376610310 ~2001
796898159159379631910 ~2001
7969229332550153385711 ~2003
796931711159386342310 ~2001
796945283159389056710 ~2001
797001197478200718310 ~2002
797035331159407066310 ~2001
797038631159407726310 ~2001
797065259159413051910 ~2001
797084339159416867910 ~2001
797102879159420575910 ~2001
797133671159426734310 ~2001
797138759159427751910 ~2001
797151281637721024910 ~2002
797152931159430586310 ~2001
797156159159431231910 ~2001
797169011159433802310 ~2001
797200199159440039910 ~2001
7972056971913293672911 ~2003
797224871159444974310 ~2001
797265179637812143310 ~2002
797271719159454343910 ~2001
7972730531754000716711 ~2003
797295683159459136710 ~2001
Exponent Prime Factor Digits Year
797309113478385467910 ~2002
797315111159463022310 ~2001
79731799918497777576912 ~2006
797321951159464390310 ~2001
797338523159467704710 ~2001
797361371159472274310 ~2001
797380151159476030310 ~2001
7973925071435306512711 ~2003
797394089637915271310 ~2002
797395457478437274310 ~2002
797397431159479486310 ~2001
797397743159479548710 ~2001
797416153478449691910 ~2002
797431703159486340710 ~2001
797440571159488114310 ~2001
797462951159492590310 ~2001
797479357478487614310 ~2002
797482883159496576710 ~2001
797521859638017487310 ~2002
797558171159511634310 ~2001
797559011159511802310 ~2001
797577659159515531910 ~2001
797581201478548720710 ~2002
797583191159516638310 ~2001
797592121478555272710 ~2002
Home
4.724.182 digits
e-mail
25-04-13