Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
7264778031888842287911 ~2003
7265033531598307376711 ~2003
726521483145304296710 ~2000
726532139145306427910 ~2000
72653917112787089409712 ~2005
726573959145314791910 ~2000
7266401471307952264711 ~2003
726660607726660607110 ~2002
726676243726676243110 ~2002
726684323145336864710 ~2000
726708179145341635910 ~2000
726781403145356280710 ~2000
726782333436069399910 ~2001
726783059145356611910 ~2000
726794477436076686310 ~2001
72688148376322555715112 2006
726921911581537528910 ~2002
726931451145386290310 ~2000
726948581436169148710 ~2001
726948923145389784710 ~2000
726951119145390223910 ~2000
726972677581578141710 ~2002
726977483145395496710 ~2000
727027331145405466310 ~2000
7270918212181275463111 ~2003
Exponent Prime Factor Digits Year
727121711145424342310 ~2000
7271780413345018988711 ~2004
727180931145436186310 ~2000
727191623145438324710 ~2000
727194659145438931910 ~2000
7272117672908847068111 ~2003
727215971145443194310 ~2000
727240571145448114310 ~2000
7272537531018155254311 ~2002
727254763727254763110 ~2002
727278659145455731910 ~2000
727313183145462636710 ~2000
727324943145464988710 ~2000
727331303145466260710 ~2000
727340599727340599110 ~2002
727342787581874229710 ~2002
727372199145474439910 ~2000
727386251145477250310 ~2000
727414151145482830310 ~2000
727441919145488383910 ~2000
727527851145505570310 ~2000
727556783145511356710 ~2000
727557121436534272710 ~2001
7275679131018595078311 ~2002
727626161582100928910 ~2002
Exponent Prime Factor Digits Year
727630949582104759310 ~2002
727673099145534619910 ~2000
727703051145540610310 ~2000
727766497436659898310 ~2001
727786883145557376710 ~2000
727801391145560278310 ~2000
7278045291018926340711 ~2002
727817641436690584710 ~2001
727837079145567415910 ~2000
727871999145574399910 ~2000
7278786011601332922311 ~2003
727890617436734370310 ~2001
727896173436737703910 ~2001
727903703145580740710 ~2000
727916963145583392710 ~2000
7279176897570343965711 ~2004
727929947582343957710 ~2002
7279553771164728603311 ~2002
727987259145597451910 ~2000
72799947115287988891112 ~2005
728012941436807764710 ~2001
728014751145602950310 ~2000
7280235011164837601711 ~2002
728053831728053831110 ~2002
728077019145615403910 ~2000
Exponent Prime Factor Digits Year
728133743145626748710 ~2000
728145059145629011910 ~2000
728171891145634378310 ~2000
728192243145638448710 ~2000
728244059145648811910 ~2000
728244683145648936710 ~2000
728254031145650806310 ~2000
728260451145652090310 ~2000
728262617582610093710 ~2002
728276603145655320710 ~2000
728286551145657310310 ~2000
728320811145664162310 ~2000
728327291145665458310 ~2000
728345231145669046310 ~2000
728355983145671196710 ~2000
7283667131165386740911 ~2002
728368499145673699910 ~2000
7283816291748115909711 ~2003
728385659145677131910 ~2000
728405663145681132710 ~2000
728408699145681739910 ~2000
728413391145682678310 ~2000
728431799145686359910 ~2000
728460839145692167910 ~2000
728467199145693439910 ~2000
Home
4.724.182 digits
e-mail
25-04-13