Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
6260798631502591671311 ~2002
626080151125216030310 ~2000
626085983125217196710 ~2000
626094851125218970310 ~2000
626113283125222656710 ~2000
626116301375669780710 ~2001
626117039125223407910 ~2000
626164139125232827910 ~2000
626182597375709558310 ~2001
626212571125242514310 ~2000
6262279571878683871111 ~2003
626235803125247160710 ~2000
626285351125257070310 ~2000
626377637501102109710 ~2001
626403611125280722310 ~2000
626462351125292470310 ~2000
626467643125293528710 ~2000
626485823125297164710 ~2000
626494031125298806310 ~2000
626497919125299583910 ~2000
626517071125303414310 ~2000
626544491125308898310 ~2000
626549783125309956710 ~2000
626566403125313280710 ~2000
626570363125314072710 ~2000
Exponent Prime Factor Digits Year
626588999125317799910 ~2000
626634971125326994310 ~2000
626636639125327327910 ~2000
626672681376003608710 ~2001
626681857376009114310 ~2001
626692691125338538310 ~2000
626698199125339639910 ~2000
626710211125342042310 ~2000
626754431125350886310 ~2000
626766779125353355910 ~2000
626768531125353706310 ~2000
626775563125355112710 ~2000
626790551125358110310 ~2000
626796503125359300710 ~2000
626807821376084692710 ~2001
626851943125370388710 ~2000
626858339125371667910 ~2000
626862503125372500710 ~2000
626878019125375603910 ~2000
626879009501503207310 ~2001
626889581376133748710 ~2001
6269175071003068011311 ~2002
626927531125385506310 ~2000
626933039125386607910 ~2000
626942339125388467910 ~2000
Exponent Prime Factor Digits Year
626946191125389238310 ~2000
626951603125390320710 ~2000
626952071501561656910 ~2001
626952563125390512710 ~2000
626952971125390594310 ~2000
626957537877740551910 ~2002
626966213376179727910 ~2001
626977271125395454310 ~2000
6269812632131736294311 ~2003
627026651125405330310 ~2000
627051251125410250310 ~2000
627080903125416180710 ~2000
627086951125417390310 ~2000
627096251125419250310 ~2000
627101999125420399910 ~2000
627142619125428523910 ~2000
627152411125430482310 ~2000
627156779125431355910 ~2000
627177263125435452710 ~2000
627194819125438963910 ~2000
627203519125440703910 ~2000
627213239125442647910 ~2000
627224831125444966310 ~2000
627229457878121239910 ~2002
627241933376345159910 ~2001
Exponent Prime Factor Digits Year
627269557376361734310 ~2001
627305183125461036710 ~2000
627314707627314707110 ~2001
627355921376413552710 ~2001
627364403125472880710 ~2000
627365363125473072710 ~2000
627368363125473672710 ~2000
627395819125479163910 ~2000
627404639125480927910 ~2000
627413879125482775910 ~2000
6274253111003880497711 ~2002
627445501376467300710 ~2001
627463679501970943310 ~2001
627465071125493014310 ~2000
6274907935019926344111 ~2004
627491699125498339910 ~2000
627500063125500012710 ~2000
627507703627507703110 ~2001
627508151125501630310 ~2000
627546071125509214310 ~2000
627558719125511743910 ~2000
627568861376541316710 ~2001
627599111125519822310 ~2000
627604403125520880710 ~2000
627607199125521439910 ~2000
Home
4.768.925 digits
e-mail
25-05-04