Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
624746879124949375910 ~2000
624747191124949438310 ~2000
624749443624749443110 ~2001
624755639124951127910 ~2000
624773819124954763910 ~2000
624787481374872488710 ~2001
624795599124959119910 ~2000
624825683124965136710 ~2000
6248353311999473059311 ~2003
624843419124968683910 ~2000
624843911124968782310 ~2000
624850679124970135910 ~2000
624881137374928682310 ~2001
624893573374936143910 ~2001
624901271499921016910 ~2001
624908951124981790310 ~2000
624950747499960597710 ~2001
6249999791124999962311 ~2002
625015199125003039910 ~2000
625032899125006579910 ~2000
6250430171875129051111 ~2003
625057781375034668710 ~2001
625058111125011622310 ~2000
625062983125012596710 ~2000
6250647471625168342311 ~2002
Exponent Prime Factor Digits Year
625073303125014660710 ~2000
625075751125015150310 ~2000
625150271125030054310 ~2000
625180121375108072710 ~2001
625181663125036332710 ~2000
625184123125036824710 ~2000
625194851125038970310 ~2000
625207553375124531910 ~2001
625219237375131542310 ~2001
625266503125053300710 ~2000
625328939125065787910 ~2000
625342859125068571910 ~2000
625356839125071367910 ~2000
625359941500287952910 ~2001
625364561375218736710 ~2001
625367279125073455910 ~2000
625367399125073479910 ~2000
625372883125074576710 ~2000
625373291125074658310 ~2000
625396679125079335910 ~2000
6254453931876336179111 ~2003
625456523125091304710 ~2000
625462679125092535910 ~2000
625481963125096392710 ~2000
625492583125098516710 ~2000
Exponent Prime Factor Digits Year
625499051125099810310 ~2000
625502201375301320710 ~2001
625508879125101775910 ~2000
625523999125104799910 ~2000
625528511125105702310 ~2000
6255410991125973978311 ~2002
625582871125116574310 ~2000
625598219125119643910 ~2000
625614959125122991910 ~2000
625658651125131730310 ~2000
625664051125132810310 ~2000
625666511125133302310 ~2000
625670543125134108710 ~2000
625671071125134214310 ~2000
625675997875946395910 ~2002
625680941500544752910 ~2001
625686443125137288710 ~2000
625704461375422676710 ~2001
625719551125143910310 ~2000
625720811125144162310 ~2000
625720943125144188710 ~2000
625725671125145134310 ~2000
625738163125147632710 ~2000
625745903125149180710 ~2000
625771931125154386310 ~2000
Exponent Prime Factor Digits Year
625775537876085751910 ~2002
625775939125155187910 ~2000
625781993375469195910 ~2001
625797373375478423910 ~2001
625810331125162066310 ~2000
625838243125167648710 ~2000
625844423125168884710 ~2000
625857731125171546310 ~2000
625862459500689967310 ~2001
625862933375517759910 ~2001
625875671125175134310 ~2000
625883039125176607910 ~2000
625887131500709704910 ~2001
625894961375536976710 ~2001
625895189500716151310 ~2001
625906511125181302310 ~2000
625928053375556831910 ~2001
625970123125194024710 ~2000
625970963125194192710 ~2000
625988197375592918310 ~2001
626021867500817493710 ~2001
626065463125213092710 ~2000
626067073375640243910 ~2001
6260730791126931542311 ~2002
626074523125214904710 ~2000
Home
4.768.925 digits
e-mail
25-05-04