Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
607964713364778827910 ~2001
607969919121593983910 ~2000
607996463121599292710 ~2000
608010479121602095910 ~2000
608030303121606060710 ~2000
608037299121607459910 ~2000
608043701364826220710 ~2001
608047931121609586310 ~2000
608053031121610606310 ~2000
608056453364833871910 ~2001
608058041364834824710 ~2001
608061539121612307910 ~2000
608098223121619644710 ~2000
608100239486480191310 ~2001
608100359121620071910 ~2000
608111723121622344710 ~2000
6081170531824351159111 ~2002
608122643121624528710 ~2000
608127431121625486310 ~2000
608132879121626575910 ~2000
608162491608162491110 ~2001
608167223121633444710 ~2000
6081899291338017843911 ~2002
608225699121645139910 ~2000
60823168311678048313712 ~2004
Exponent Prime Factor Digits Year
608232659121646531910 ~2000
608238479121647695910 ~2000
608239211121647842310 ~2000
608242757364945654310 ~2001
608244977486595981710 ~2001
608256839121651367910 ~2000
608267483121653496710 ~2000
608274581364964748710 ~2001
608292439608292439110 ~2001
608295899121659179910 ~2000
608304143121660828710 ~2000
608305583121661116710 ~2000
608316419121663283910 ~2000
608322277364993366310 ~2001
608338103121667620710 ~2000
608343839121668767910 ~2000
608355983121671196710 ~2000
608356799121671359910 ~2000
608357111121671422310 ~2000
608374139121674827910 ~2000
608393741365036244710 ~2001
608398937851758511910 ~2002
608398991121679798310 ~2000
608400959121680191910 ~2000
608408051121681610310 ~2000
Exponent Prime Factor Digits Year
608409071121681814310 ~2000
608417891121683578310 ~2000
608418203121683640710 ~2000
608424599121684919910 ~2000
608426519121685303910 ~2000
608451923121690384710 ~2000
608464403121692880710 ~2000
608510879121702175910 ~2000
608517191121703438310 ~2000
608538083121707616710 ~2000
608548043121709608710 ~2000
6085489911095388183911 ~2002
608557769486846215310 ~2001
608591981486873584910 ~2001
608598839121719767910 ~2000
608599259121719851910 ~2000
608600231121720046310 ~2000
608608327608608327110 ~2001
608608919121721783910 ~2000
608642591121728518310 ~2000
608656019121731203910 ~2000
608662403121732480710 ~2000
6086700471095606084711 ~2002
608708819121741763910 ~2000
608715599121743119910 ~2000
Exponent Prime Factor Digits Year
608769431121753886310 ~2000
6087730691339300751911 ~2002
608775131121755026310 ~2000
608785003608785003110 ~2001
608814911121762982310 ~2000
608824547487059637710 ~2001
608837591487070072910 ~2001
608841917365305150310 ~2001
608847539121769507910 ~2000
608876291121775258310 ~2000
608924159121784831910 ~2000
608968751121793750310 ~2000
608971589487177271310 ~2001
608988623121797724710 ~2000
608990411121798082310 ~2000
608993837365396302310 ~2001
609002063121800412710 ~2000
609009913974415860910 ~2002
609010799121802159910 ~2000
609059579121811915910 ~2000
609067883121813576710 ~2000
609071159121814231910 ~2000
609087383121817476710 ~2000
609100091121820018310 ~2000
609108371121821674310 ~2000
Home
4.768.925 digits
e-mail
25-05-04