Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
582356057349413634310 ~2001
5823637211747091163111 ~2002
582375461349425276710 ~2001
5823789771397709544911 ~2002
582407473349444483910 ~2001
582408989815372584710 ~2002
582484649465987719310 ~2001
582492731116498546310 ~1999
582522599116504519910 ~1999
582534791116506958310 ~1999
5825429512912714755111 ~2003
582559343116511868710 ~1999
582571751116514350310 ~1999
5826146631514798123911 ~2002
582624179466099343310 ~2001
582644203582644203110 ~2001
582658033349594819910 ~2001
582680957349608574310 ~2001
582697163116539432710 ~1999
582710279116542055910 ~1999
582712633349627579910 ~2001
582740423116548084710 ~1999
582750071116550014310 ~1999
582751303582751303110 ~2001
582753371116550674310 ~1999
Exponent Prime Factor Digits Year
582764543116552908710 ~1999
582778799116555759910 ~1999
582782663116556532710 ~1999
582798323116559664710 ~1999
582805403116561080710 ~1999
582818651466254920910 ~2001
582823331116564666310 ~1999
582828443116565688710 ~1999
582832223116566444710 ~1999
582832583116566516710 ~1999
582850883116570176710 ~1999
5828589777810310291911 ~2004
582861683116572336710 ~1999
582862177349717306310 ~2001
582867443116573488710 ~1999
582872639116574527910 ~1999
582902399116580479910 ~1999
582940511116588102310 ~1999
582944653349766791910 ~2001
582957503116591500710 ~1999
582960551116592110310 ~1999
582964559116592911910 ~1999
582973679116594735910 ~1999
582977207466381765710 ~2001
582979393349787635910 ~2001
Exponent Prime Factor Digits Year
583030411583030411110 ~2001
583066751116613350310 ~1999
583086131116617226310 ~1999
583109711466487768910 ~2001
583114859116622971910 ~1999
583146401349887840710 ~2001
5831467013265621525711 ~2003
5831484293615520259911 ~2003
583156733349894039910 ~2001
5831665691399599765711 ~2002
5831757672332703068111 ~2003
583182731116636546310 ~1999
583198943116639788710 ~1999
583201631116640326310 ~1999
583204177349922506310 ~2001
583251083116650216710 ~1999
583296671116659334310 ~1999
583316051466652840910 ~2001
583317419116663483910 ~1999
583318469816645856710 ~2002
583349411116669882310 ~1999
583370219116674043910 ~1999
583383433350030059910 ~2001
583384001466707200910 ~2001
583409483116681896710 ~1999
Exponent Prime Factor Digits Year
5834222412683742308711 ~2003
583438679116687735910 ~1999
583460243116692048710 ~1999
5834739914784486726311 ~2003
583495093350097055910 ~2001
583497983116699596710 ~1999
583516523116703304710 ~1999
583519151116703830310 ~1999
5836048671050488760711 ~2002
5836943691751083107111 ~2002
583709171466967336910 ~2001
583748831116749766310 ~1999
583774151116754830310 ~1999
583775183116755036710 ~1999
583784651116756930310 ~1999
583791541350274924710 ~2001
583792799116758559910 ~1999
583798619116759723910 ~1999
583814879116762975910 ~1999
583834991116766998310 ~1999
583845937350307562310 ~2001
583853639116770727910 ~1999
583869551116773910310 ~1999
583869701350321820710 ~2001
583915763116783152710 ~1999
Home
4.768.925 digits
e-mail
25-05-04