Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
510716051102143210310 ~1999
510717611102143522310 ~1999
510738551102147710310 ~1999
5107400514903104489711 ~2003
510769241306461544710 ~2000
510774479102154895910 ~1999
510795539102159107910 ~1999
510798539102159707910 ~1999
510802199102160439910 ~1999
510808751102161750310 ~1999
510816457306489874310 ~2000
510847643102169528710 ~1999
510879371102175874310 ~1999
510892631102178526310 ~1999
510900059102180011910 ~1999
510915599102183119910 ~1999
510927671102185534310 ~1999
5109397131226255311311 ~2002
510944711102188942310 ~1999
511006343102201268710 ~1999
511017713306610627910 ~2000
511022471102204494310 ~1999
511027031102205406310 ~1999
5110316992146333135911 ~2002
511059119102211823910 ~1999
Exponent Prime Factor Digits Year
511061891102212378310 ~1999
511061951102212390310 ~1999
511064797306638878310 ~2000
5110675091124348519911 ~2002
511079909715511872710 ~2001
511080071102216014310 ~1999
511088243102217648710 ~1999
511097597306658558310 ~2000
511099811102219962310 ~1999
511117793306670675910 ~2000
511123559102224711910 ~1999
511159993817855988910 ~2001
5111695571226806936911 ~2002
511170917306702550310 ~2000
511193497306716098310 ~2000
511199309408959447310 ~2000
511199963102239992710 ~1999
511222199102244439910 ~1999
51122383713496309296912 ~2004
511224419102244883910 ~1999
511243021306745812710 ~2000
511256441306753864710 ~2000
511266923102253384710 ~1999
511278563102255712710 ~1999
511279031102255806310 ~1999
Exponent Prime Factor Digits Year
511286879102257375910 ~1999
511293061306775836710 ~2000
511296323102259264710 ~1999
511304879102260975910 ~1999
511320899102264179910 ~1999
511330217306798130310 ~2000
511331273306798763910 ~2000
511332779102266555910 ~1999
511332917409066333710 ~2000
5113478771227234904911 ~2002
511352651102270530310 ~1999
511356431102271286310 ~1999
511359341409087472910 ~2000
511367113306820267910 ~2000
511373003102274600710 ~1999
511381823102276364710 ~1999
511382951102276590310 ~1999
511392179102278435910 ~1999
511406617818250587310 ~2001
511413977306848386310 ~2000
511434043818294468910 ~2001
511439459102287891910 ~1999
511445243102289048710 ~1999
5114536331125197992711 ~2002
511479659102295931910 ~1999
Exponent Prime Factor Digits Year
511484849409187879310 ~2000
511488959102297791910 ~1999
511494719102298943910 ~1999
511508219102301643910 ~1999
511511999102302399910 ~1999
511536671102307334310 ~1999
511540643102308128710 ~1999
511552883102310576710 ~1999
511552997306931798310 ~2000
511583651102316730310 ~1999
511599383102319876710 ~1999
511599611102319922310 ~1999
511608793306965275910 ~2000
511619639102323927910 ~1999
511626383102325276710 ~1999
511648523102329704710 ~1999
511661831102332366310 ~1999
511667063102333412710 ~1999
511695323102339064710 ~1999
511719071921094327910 ~2001
511736999102347399910 ~1999
511738043102347608710 ~1999
5117504031228200967311 ~2002
511768091102353618310 ~1999
511769231102353846310 ~1999
Home
4.768.925 digits
e-mail
25-05-04