Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
579441683115888336710 ~1999
5794517231970135858311 ~2002
579466259115893251910 ~1999
5794962731390791055311 ~2002
579499163115899832710 ~1999
579535843579535843110 ~2001
579537367579537367110 ~2001
579539483115907896710 ~1999
579549053347729431910 ~2001
5795544492318217796111 ~2003
579565991115913198310 ~1999
579567539115913507910 ~1999
579574199115914839910 ~1999
579574379115914875910 ~1999
579578423115915684710 ~1999
579587639115917527910 ~1999
579607211115921442310 ~1999
579609929463687943310 ~2001
579613739115922747910 ~1999
579624119115924823910 ~1999
579649523115929904710 ~1999
579649859115929971910 ~1999
579660839115932167910 ~1999
579664859115932971910 ~1999
579685517347811310310 ~2001
Exponent Prime Factor Digits Year
579690557347814334310 ~2001
5796938596492571220911 ~2004
579736931115947386310 ~1999
579737531115947506310 ~1999
579752051115950410310 ~1999
579764483115952896710 ~1999
579772691115954538310 ~1999
5797809071043605632711 ~2002
5797970033246863216911 ~2003
579821111115964222310 ~1999
579822011115964402310 ~1999
579920729463936583310 ~2001
579952283115990456710 ~1999
579981323115996264710 ~1999
579988463115997692710 ~1999
580003007464002405710 ~2001
580014251116002850310 ~1999
580019123116003824710 ~1999
580040647580040647110 ~2001
580080911116016182310 ~1999
580116263116023252710 ~1999
580116479116023295910 ~1999
580121831116024366310 ~1999
580143089464114471310 ~2001
580147783580147783110 ~2001
Exponent Prime Factor Digits Year
580177463116035492710 ~1999
580182191116036438310 ~1999
580191263116038252710 ~1999
580217171116043434310 ~1999
580218311116043662310 ~1999
580246619116049323910 ~1999
5802659231392638215311 ~2002
580266779116053355910 ~1999
580291031116058206310 ~1999
5803059377892160743311 ~2004
5803070092785473643311 ~2003
580314191464251352910 ~2001
580317937348190762310 ~2001
580326083116065216710 ~1999
580336979116067395910 ~1999
580348871116069774310 ~1999
580416563116083312710 ~1999
580426859116085371910 ~1999
580458839116091767910 ~1999
580488431116097686310 ~1999
580494191116098838310 ~1999
580507043116101408710 ~1999
5805317692206020722311 ~2003
580579367464463493710 ~2001
580642913348385747910 ~2001
Exponent Prime Factor Digits Year
580648571116129714310 ~1999
580653263116130652710 ~1999
580663121348397872710 ~2001
580686503116137300710 ~1999
580688183116137636710 ~1999
580697681348418608710 ~2001
580733623580733623110 ~2001
580735139116147027910 ~1999
580738271116147654310 ~1999
5807393531277626576711 ~2002
5807502131393800511311 ~2002
580778039116155607910 ~1999
580778371580778371110 ~2001
580802291116160458310 ~1999
580809851116161970310 ~1999
580843031116168606310 ~1999
5808464591045523626311 ~2002
580850591116170118310 ~1999
580856347580856347110 ~2001
580869743116173948710 ~1999
580880243116176048710 ~1999
580884599116176919910 ~1999
580903679116180735910 ~1999
580906217348543730310 ~2001
580913699116182739910 ~1999
Home
4.768.925 digits
e-mail
25-05-04