Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
267830011482094019910 ~1999
2678330995356661999 ~1997
2678484595356969199 ~1997
2678612112410750899111 ~2001
2678634235357268479 ~1997
2678692195357384399 ~1997
2678855995357711999 ~1997
2678877771500171551311 ~2000
267890681160734408710 ~1998
2679213835358427679 ~1997
2679252115358504239 ~1997
267927221214341776910 ~1998
2679314515358629039 ~1997
267932117160759270310 ~1998
267934837160760902310 ~1998
267935159214348127310 ~1998
2679357715358715439 ~1997
2679416035358832079 ~1997
2679510835359021679 ~1997
2679538315359076639 ~1997
2679553795359107599 ~1997
2679555595359111199 ~1997
26796986969189820175912 ~2004
2679847795359695599 ~1997
2679851995359703999 ~1997
Exponent Prime Factor Digits Year
2680007635360015279 ~1997
2680015795360031599 ~1997
2680058515360117039 ~1997
268013401160808040710 ~1998
2680139395360278799 ~1997
268014337160808602310 ~1998
2680144315360288639 ~1997
2680197235360394479 ~1997
268022701160813620710 ~1998
2680228315360456639 ~1997
268038581160823148710 ~1998
2680396435360792879 ~1997
2680417315360834639 ~1997
2680418035360836079 ~1997
2680448515360897039 ~1997
2680495435360990879 ~1997
268090723268090723110 ~1999
268094353160856611910 ~1998
268096733160858039910 ~1998
268097197160858318310 ~1998
268099397160859638310 ~1998
2681030515362061039 ~1997
268104719214483775310 ~1998
268111889643468533710 ~1999
268113941160868364710 ~1998
Exponent Prime Factor Digits Year
268121333160872799910 ~1998
268126787214501429710 ~1998
2681402635362805279 ~1997
268141193160884715910 ~1998
268145399214516319310 ~1998
2681518795363037599 ~1997
2681528035363056079 ~1997
268157599482683678310 ~1999
2681913835363827679 ~1997
2681920195363840399 ~1997
268212101160927260710 ~1998
2682145435364290879 ~1997
268222621160933572710 ~1998
2682240235364480479 ~1997
2682355315364710639 ~1997
268242761214594208910 ~1998
2682430915364861839 ~1997
2682454435364908879 ~1997
2682590035365180079 ~1997
2682754315365508639 ~1997
268284257160970554310 ~1998
2682900235365800479 ~1997
2682905515365811039 ~1997
268305113160983067910 ~1998
268305199482949358310 ~1999
Exponent Prime Factor Digits Year
2683108491287892075311 ~2000
2683117795366235599 ~1997
2683132195366264399 ~1997
2683136635366273279 ~1997
2683139395366278799 ~1997
2683154995366309999 ~1997
268318177429309083310 ~1999
268318517160991110310 ~1998
2683193515366387039 ~1997
268322497160993498310 ~1998
2683224971878257479111
2683234315366468639 ~1997
2683272595366545199 ~1997
2683379395366758799 ~1997
2683399795366799599 ~1997
2683441435366882879 ~1997
2683466515366933039 ~1997
2683577035367154079 ~1997
2683685395367370799 ~1997
268369949375717928710 ~1999
2683831195367662399 ~1997
2683834915367669839 ~1997
268395187429432299310 ~1999
268397981161038788710 ~1998
2684079835368159679 ~1997
Home
5.307.017 digits
e-mail
26-01-11