Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4106886118213772239 ~1998
4106950918213901839 ~1998
4106991718213983439 ~1998
4107024718214049439 ~1998
410703947328563157710 ~2000
410705441246423264710 ~1999
4107096838214193679 ~1998
4107121198214242399 ~1998
4107334438214668879 ~1998
4107511632628807443311 ~2002
410755993246453595910 ~1999
4107650518215301039 ~1998
410776111410776111110 ~2000
410776727328621381710 ~2000
410805113246483067910 ~1999
410817193246490315910 ~1999
4108175518216351039 ~1998
410822213246493327910 ~1999
4108286998216573999 ~1998
4108305718216611439 ~1998
4108326838216653679 ~1998
410833589328666871310 ~2000
4108402318216804639 ~1998
4108405198216810399 ~1998
4108544038217088079 ~1998
Exponent Prime Factor Digits Year
4108555318217110639 ~1998
4108625038217250079 ~1998
4108681198217362399 ~1998
4108761718217523439 ~1998
410884469575238256710 ~2000
410884961328707968910 ~2000
4108883638217767279 ~1998
4108933198217866399 ~1998
410893573246536143910 ~1999
4109159518218319039 ~1998
4109214718218429439 ~1998
4109341318218682639 ~1998
410937167328749733710 ~2000
4109526838219053679 ~1998
410964329575350060710 ~2000
4109765398219530799 ~1998
411018781246611268710 ~1999
411018997246611398310 ~1999
4110224398220448799 ~1998
411054737575476631910 ~2000
411079301328863440910 ~2000
4110793671068806354311 ~2001
411085897246651538310 ~1999
411088003411088003110 ~2000
4110972598221945199 ~1998
Exponent Prime Factor Digits Year
4111032118222064239 ~1998
4111071598222143199 ~1998
4111101238222202479 ~1998
411128801246677280710 ~1999
4111294438222588879 ~1998
4111438918222877839 ~1998
411151991328921592910 ~2000
411162197575627075910 ~2000
4111634518223269039 ~1998
4111778398223556799 ~1998
4111833238223666479 ~1998
4111876918223753839 ~1998
4111920118223840239 ~1998
4112015518224031039 ~1998
4112054398224108799 ~1998
4112138398224276799 ~1998
4112140918224281839 ~1998
411218477575705867910 ~2000
4112205598224411199 ~1998
4112330998224661999 ~1998
4112341798224683599 ~1998
4112403598224807199 ~1998
4112441398224882799 ~1998
411245117328996093710 ~2000
4112543038225086079 ~1998
Exponent Prime Factor Digits Year
4112601238225202479 ~1998
4112611318225222639 ~1998
4112619238225238479 ~1998
4112655118225310239 ~1998
4112809318225618639 ~1998
4112998798225997599 ~1998
411308153246784891910 ~1999
4113111718226223439 ~1998
411311561246786936710 ~1999
411327157246796294310 ~1999
4113272638226545279 ~1998
411327913246796747910 ~1999
4113808918227617839 ~1998
4113888718227777439 ~1998
411389221246833532710 ~1999
4114063798228127599 ~1998
4114199518228399039 ~1998
411427937246856762310 ~1999
4114370638228741279 ~1998
4114490998228981999 ~1998
411451709329161367310 ~2000
4114780438229560879 ~1998
4114805998229611999 ~1998
411483533246890119910 ~1999
4114842598229685199 ~1998
Home
4.768.925 digits
e-mail
25-05-04