Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4096917598193835199 ~1998
409694273245816563910 ~1999
4097073598194147199 ~1998
409709561245825736710 ~1999
4097124838194249679 ~1998
4097135998194271999 ~1998
4097272438194544879 ~1998
409746569327797255310 ~2000
409757837245854702310 ~1999
4097597998195195999 ~1998
4097696638195393279 ~1998
4097765998195531999 ~1998
409780081245868048710 ~1999
4097925118195850239 ~1998
409801237983522968910 ~2001
4098240718196481439 ~1998
409864061327891248910 ~2000
4098711838197423679 ~1998
4098745798197491599 ~1998
409915477245949286310 ~1999
4099170718198341439 ~1998
4099347118198694239 ~1998
4099398238198796479 ~1998
4099526638199053279 ~1998
4099527238199054479 ~1998
Exponent Prime Factor Digits Year
409953979409953979110 ~2000
4099721518199443039 ~1998
4099727331229918199111 ~2001
409988053245992831910 ~1999
410020097246012058310 ~1999
4100221918200443839 ~1998
410024081246014448710 ~1999
4100325838200651679 ~1998
4100440318200880639 ~1998
4100593198201186399 ~1998
410060173246036103910 ~1999
4100883238201766479 ~1998
410094779328075823310 ~2000
4101091318202182639 ~1998
4101176638202353279 ~1998
4101306598202613199 ~1998
410133137328106509710 ~2000
4101364918202729839 ~1998
4101368271066355750311 ~2001
4101517198203034399 ~1998
410179727984431344910 ~2001
410181647984435952910 ~2001
410182601246109560710 ~1999
4101889918203779839 ~1998
4101957838203915679 ~1998
Exponent Prime Factor Digits Year
4102120798204241599 ~1998
4102192798204385599 ~1998
4102470118204940239 ~1998
4102518238205036479 ~1998
4102645798205291599 ~1998
410265553902584216710 ~2001
4102903198205806399 ~1998
410296193574414670310 ~2000
4103031238206062479 ~1998
4103111831641244732111 ~2001
4103179918206359839 ~1998
410328601656525761710 ~2000
41034375115182718787112 ~2004
4103625598207251199 ~1998
4103683191313178620911 ~2001
4103776318207552639 ~1998
410390623410390623110 ~2000
4103999398207998799 ~1998
410413537656661659310 ~2000
410416841246250104710 ~1999
4104259798208519599 ~1998
410426677246256006310 ~1999
410436619410436619110 ~2000
4104569398209138799 ~1998
410464027985113664910 ~2001
Exponent Prime Factor Digits Year
4104686518209373039 ~1998
410473277328378621710 ~2000
4104857398209714799 ~1998
4104858118209716239 ~1998
410487557246292534310 ~1999
4104981118209962239 ~1998
4105071838210143679 ~1998
4105272238210544479 ~1998
4105349518210699039 ~1998
410535959738964726310 ~2001
410540653246324391910 ~1999
410544131328435304910 ~2000
4105488118210976239 ~1998
4105490638210981279 ~1998
410561597246336958310 ~1999
4105623718211247439 ~1998
410576549328461239310 ~2000
410580697246348418310 ~1999
4105835398211670799 ~1998
4105910398211820799 ~1998
4106075038212150079 ~1998
410630771328504616910 ~2000
410640613657024980910 ~2000
410649047328519237710 ~2000
410667017246400210310 ~1999
Home
4.768.925 digits
e-mail
25-05-04