Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3147174236294348479 ~1997
3147314516294629039 ~1997
31473331914100052691312 ~2003
3147346316294692639 ~1997
3147403196294806399 ~1997
3147471836294943679 ~1997
3147576236295152479 ~1997
31475839328139400334312 ~2004
3147593036295186079 ~1997
3147608636295217279 ~1997
3147674516295349039 ~1997
314774069251819255310 ~1999
3147942836295885679 ~1997
314807159251845727310 ~1999
3148088996296177999 ~1997
3148122716296245439 ~1997
314813221188887932710 ~1999
314813839314813839110 ~1999
314833273188899963910 ~1999
3148462196296924399 ~1997
3148659236297318479 ~1997
314866217251892973710 ~1999
314871329251897063310 ~1999
3148751036297502079 ~1997
3148800116297600239 ~1997
Exponent Prime Factor Digits Year
314882047755716912910 ~2000
3148897796297795599 ~1997
3148992236297984479 ~1997
3149109236298218479 ~1997
314917019566850634310 ~2000
3149238596298477199 ~1997
314939857503903771310 ~2000
3149409596298819199 ~1997
314945341503912545710 ~2000
3149528996299057999 ~1997
3149581316299162639 ~1997
314958353188975011910 ~1999
3149758196299516399 ~1997
3149799116299598239 ~1997
314982937188989762310 ~1999
3149834396299668799 ~1997
3149969636299939279 ~1997
3149995436299990879 ~1997
3150220796300441599 ~1997
3150322796300645599 ~1997
315032857189019714310 ~1999
315046661189027996710 ~1999
3150531596301063199 ~1997
3150729731260291892111 ~2001
3150786116301572239 ~1997
Exponent Prime Factor Digits Year
3150829316301658639 ~1997
3150832436301664879 ~1997
315084857252067885710 ~1999
3150910436301820879 ~1997
315093041189055824710 ~1999
3151142636302285279 ~1997
3151218716302437439 ~1997
315124501189074700710 ~1999
3151308116302616239 ~1997
315135497252108397710 ~1999
315138533189083119910 ~1999
3151413836302827679 ~1997
315141779252113423310 ~1999
3151793636303587279 ~1997
315187337189112402310 ~1999
3151982636303965279 ~1997
315212173189127303910 ~1999
3152164916304329839 ~1997
3152209436304418879 ~1997
3152236316304472639 ~1997
3152441036304882079 ~1997
3152441516304883039 ~1997
315253241252202592910 ~1999
3152605796305211599 ~1997
3152617316305234639 ~1997
Exponent Prime Factor Digits Year
3152660516305321039 ~1997
3152703116305406239 ~1997
315276173189165703910 ~1999
3153118796306237599 ~1997
3153471716306943439 ~1997
3153527996307055999 ~1997
3153528836307057679 ~1997
315356551315356551110 ~1999
3153764996307529999 ~1997
315391247252312997710 ~1999
3154032236308064479 ~1997
315405283315405283110 ~1999
3154082516308165039 ~1997
3154171916308343839 ~1997
315420527567756948710 ~2000
3154226996308453999 ~1997
3154261796308523599 ~1997
3154276436308552879 ~1997
3154451996308903999 ~1997
3154467836308935679 ~1997
315453629252362903310 ~1999
3154616516309233039 ~1997
3154726916309453839 ~1997
315473813757137151310 ~2000
3154796636309593279 ~1997
Home
4.768.925 digits
e-mail
25-05-04