Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3078280196156560399 ~1997
3078303116156606239 ~1997
3078401636156803279 ~1997
3078445916156891839 ~1997
307855579307855579110 ~1999
307871093184722655910 ~1998
3078793436157586879 ~1997
3078877196157754399 ~1997
3078938636157877279 ~1997
3078947036157894079 ~1997
3079038596158077199 ~1997
307906219307906219110 ~1999
3079068116158136239 ~1997
3079158596158317199 ~1997
307918349246334679310 ~1999
307918553184751131910 ~1998
3079417436158834879 ~1997
3079480316158960639 ~1997
3079504034927206448111 ~2002
3079574516159149039 ~1997
3079646036159292079 ~1997
3079676516159353039 ~1997
307995217184797130310 ~1998
3080388596160777199 ~1997
3080546396161092799 ~1997
Exponent Prime Factor Digits Year
3080604116161208239 ~1997
308064437184838662310 ~1998
308065661246452528910 ~1999
3080687036161374079 ~1997
3080721236161442479 ~1997
3080737916161475839 ~1997
308074177184844506310 ~1998
3080744636161489279 ~1997
308087081246469664910 ~1999
3080973236161946479 ~1997
308100277184860166310 ~1998
308112613184867567910 ~1998
308124149431373808710 ~1999
3081527396163054799 ~1997
3081536036163072079 ~1997
308164291308164291110 ~1999
3081681116163362239 ~1997
308171519246537215310 ~1999
308179631246543704910 ~1999
308192873184915723910 ~1998
3081955796163911599 ~1997
308200297493120475310 ~1999
308204993431486990310 ~1999
3082112516164225039 ~1997
308211689246569351310 ~1999
Exponent Prime Factor Digits Year
308217127308217127110 ~1999
3082206116164412239 ~1997
3082280996164561999 ~1997
3082305236164610479 ~1997
3082388636164777279 ~1997
308248601184949160710 ~1998
308250073184950043910 ~1998
3082586636165173279 ~1997
3082644716165289439 ~1997
3082672316165344639 ~1997
308267833493228532910 ~1999
308277911246622328910 ~1999
308282761184969656710 ~1998
3082840911726390909711 ~2001
308284349246627479310 ~1999
3082974716165949439 ~1997
308323957739977496910 ~2000
3083259116166518239 ~1997
3083461674255177104711 ~2002
3083490116166980239 ~1997
308359067246687253710 ~1999
3083707916167415839 ~1997
3083812316167624639 ~1997
308381741246705392910 ~1999
3083883712035363248711 ~2001
Exponent Prime Factor Digits Year
3083908916167817839 ~1997
3083914916167829839 ~1997
3083926916167853839 ~1997
308404757246723805710 ~1999
3084058196168116399 ~1997
3084080996168161999 ~1997
308413151246730520910 ~1999
3084169316168338639 ~1997
3084182636168365279 ~1997
308418457493469531310 ~2000
3084289796168579599 ~1997
308434409246747527310 ~1999
3084352436168704879 ~1997
308437733185062639910 ~1998
3084394796168789599 ~1997
308446301246757040910 ~1999
308451841493522945710 ~2000
3084688436169376879 ~1997
308474839555254710310 ~2000
3084751436169502879 ~1997
3084766316169532639 ~1997
3084794396169588799 ~1997
3084829316169658639 ~1997
3084860271727521751311 ~2001
3084912596169825199 ~1997
Home
4.768.925 digits
e-mail
25-05-04