Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2738019715476039439 ~1997
273807277164284366310 ~1998
273810217438096347310 ~1999
2738109235476218479 ~1997
2738142835476285679 ~1997
2738245435476490879 ~1997
2738501515477003039 ~1997
2738753515477507039 ~1997
2738864995477729999 ~1997
2738893315477786639 ~1997
2739175315478350639 ~1997
2739265315478530639 ~1997
2739285595478571199 ~1997
2739586315479172639 ~1997
273960901164376540710 ~1998
2739644515479289039 ~1997
2739667435479334879 ~1997
2739807715479615439 ~1997
2739830635479661279 ~1997
2739841435479682879 ~1997
2739854515479709039 ~1997
2739989515479979039 ~1997
2740172515480345039 ~1997
274037251438459601710 ~1999
274038001164422800710 ~1998
Exponent Prime Factor Digits Year
2740390795480781599 ~1997
2740403992027898952711 ~2001
2740409515480819039 ~1997
2740418635480837279 ~1997
2740454515480909039 ~1997
2740484035480968079 ~1997
274049593164429755910 ~1998
274049593438479348910
2740568515481137039 ~1997
2740576991973215432911 ~2001
2740719115481438239 ~1997
2740791715481583439 ~1997
2740837915481675839 ~1997
2740979035481958079 ~1997
2741121595482243199 ~1997
2741175491315764235311 ~2000
2741201035482402079 ~1997
274122281164473368710 ~1998
2741232595482465199 ~1997
2741233795482467599 ~1997
2741268835482537679 ~1997
2741369635482739279 ~1997
2741372395482744799 ~1997
274144097164486458310 ~1998
274145731274145731110 ~1999
Exponent Prime Factor Digits Year
2741507035483014079 ~1997
2741539315483078639 ~1997
2741624635483249279 ~1997
2741646595483293199 ~1997
274168267493502880710 ~1999
274170389219336311310 ~1998
2741716795483433599 ~1997
2741742595483485199 ~1997
2741803915483607839 ~1997
2741948635483897279 ~1997
2742003835484007679 ~1997
2742052195484104399 ~1997
274211131274211131110 ~1999
274211713164527027910 ~1998
2742166435484332879 ~1997
2742230635484461279 ~1997
2742339235484678479 ~1997
2742389635484779279 ~1997
274240237164544142310 ~1998
2742475795484951599 ~1997
2742481795484963599 ~1997
2742555715485111439 ~1997
2742557995485115999 ~1997
2742683395485366799 ~1997
2742898315485796639 ~1997
Exponent Prime Factor Digits Year
274291387438866219310 ~1999
274304893164582935910 ~1998
2743095595486191199 ~1997
2743146715486293439 ~1997
274317733603499012710 ~1999
2743184635486369279 ~1997
274320533384048746310 ~1999
274332637164599582310 ~1998
2743424995486849999 ~1997
274366357164619814310 ~1998
274373717164624230310 ~1998
274375457164625274310 ~1998
2743865035487730079 ~1997
2743885915487771839 ~1997
274389067274389067110 ~1999
274392361164635416710 ~1998
2743946395487892799 ~1997
274402837439044539310 ~1999
274406221164643732710 ~1998
274421099219536879310 ~1998
2744254915488509839 ~1997
2744324395488648799 ~1997
2744356315488712639 ~1997
2744376595488753199 ~1997
2744517772195614216111 ~2001
Home
4.768.925 digits
e-mail
25-05-04