Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3165545996331091999 ~1997
3165554396331108799 ~1997
3165561116331122239 ~1997
3165690596331381199 ~1997
3165690836331381679 ~1997
3165735716331471439 ~1997
3165743391582871695111 ~2001
3165751916331503839 ~1997
3165842636331685279 ~1997
3166064036332128079 ~1997
3166088996332177999 ~1997
3166201796332403599 ~1997
316638479253310783310 ~1999
3166497836332995679 ~1997
3166514036333028079 ~1997
316655623316655623110 ~1999
3166577036333154079 ~1997
316658791316658791110 ~1999
3166598396333196799 ~1997
316669571253335656910 ~1999
3166714911013348771311 ~2000
3166819796333639599 ~1997
316695061190017036710 ~1999
3167056436334112879 ~1997
3167104091266841636111 ~2001
Exponent Prime Factor Digits Year
316713101253370480910 ~1999
3167191916334383839 ~1997
316723769443413276710 ~1999
3167287196334574399 ~1997
316731347823501502310 ~2000
3167336396334672799 ~1997
316758227570164808710 ~2000
3167966636335933279 ~1997
3168063836336127679 ~1997
3168182516336365039 ~1997
3168203636336407279 ~1997
316821919760372605710 ~2000
3168366596336733199 ~1997
3168451316336902639 ~1997
3168496916336993839 ~1997
31685152933206040239312 ~2004
3168679316337358639 ~1997
3168847916337695839 ~1997
3168968036337936079 ~1997
3169057916338115839 ~1997
3169161116338322239 ~1997
316931429253545143310 ~1999
3169477372472192348711 ~2001
3169511636339023279 ~1997
3169576436339152879 ~1997
Exponent Prime Factor Digits Year
316972211253577768910 ~1999
3169756436339512879 ~1997
3169825316339650639 ~1997
316985957253588765710 ~1999
3169913516339827039 ~1997
3169938116339876239 ~1997
3170059436340118879 ~1997
3170143316340286639 ~1997
3170329796340659599 ~1997
3170349116340698239 ~1997
317036501253629200910 ~1999
317044873760907695310 ~2000
3170606516341213039 ~1997
3170798396341596799 ~1997
317081819253665455310 ~1999
3170841236341682479 ~1997
317088643507341828910 ~2000
3170899916341799839 ~1997
3171066836342133679 ~1997
3171092516342185039 ~1997
3171205796342411599 ~1997
317125253190275151910 ~1999
317128901253703120910 ~1999
3171341516342683039 ~1997
3171444236342888479 ~1997
Exponent Prime Factor Digits Year
3171540836343081679 ~1997
317158763824612783910 ~2000
3171617636343235279 ~1997
3171619916343239839 ~1997
3171670436343340879 ~1997
3171685316343370639 ~1997
317169397951508191110 ~2000
317170501507472801710 ~2000
3171732716343465439 ~1997
3171818996343637999 ~1997
3171830396343660799 ~1997
3171948596343897199 ~1997
317200441190320264710 ~1999
317200727570961308710 ~2000
317206037253764829710 ~1999
3172082636344165279 ~1997
3172337996344675999 ~1997
3172374116344748239 ~1997
3172535396345070799 ~1997
3172647236345294479 ~1997
317276339253821071310 ~1999
3172775636345551279 ~1997
3172909316345818639 ~1997
3173291636346583279 ~1997
3173306036346612079 ~1997
Home
4.724.182 digits
e-mail
25-04-13