Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2836010995672021999 ~1997
2836036795672073599 ~1997
2836176715672353439 ~1997
2836214515672429039 ~1997
283622597170173558310 ~1998
2836281835672563679 ~1997
283633481170180088710 ~1998
2836373635672747279 ~1997
2836489795672979599 ~1997
2836537915673075839 ~1997
2836613635673227279 ~1997
283663441170198064710 ~1998
2836684315673368639 ~1997
2836715515673431039 ~1997
283681813170209087910 ~1998
283691803283691803110 ~1999
2836941715673883439 ~1997
2836994395673988799 ~1997
2837125435674250879 ~1997
2837194315674388639 ~1997
2837223715674447439 ~1997
2837239915674479839 ~1997
283737851226990280910 ~1998
2837382491361943595311 ~2000
283748341170249004710 ~1998
Exponent Prime Factor Digits Year
28376338313450384354312 ~2003
2837642035675284079 ~1997
2837668915675337839 ~1997
2837712191362101851311 ~2000
2837991235675982479 ~1997
283819867510875760710 ~1999
283820507227056405710 ~1998
283825303681180727310 ~2000
2838253435676506879 ~1997
2838299635676599279 ~1997
2838301915676603839 ~1997
283832531510898555910 ~1999
283834333681202399310 ~2000
2838526435677052879 ~1997
2838557035677114079 ~1997
2838582595677165199 ~1997
2838618595677237199 ~1997
2838687235677374479 ~1997
283873903965171270310 ~2000
2838761635677523279 ~1997
2838812635677625279 ~1997
2838876715677753439 ~1997
2838920515677841039 ~1997
283909757397473659910 ~1999
2839211035678422079 ~1997
Exponent Prime Factor Digits Year
283928083283928083110 ~1999
2839362835678725679 ~1997
2839383835678767679 ~1997
2839547635679095279 ~1997
283957909681498981710 ~2000
2839602235679204479 ~1997
283962149397547008710 ~1999
2839661395679322799 ~1997
2839829035679658079 ~1997
283997513170398507910 ~1998
2840032435680064879 ~1997
284004389227203511310 ~1998
2840122435680244879 ~1997
2840349835680699679 ~1997
284035637227228509710 ~1998
2840447515680895039 ~1997
2840544715681089439 ~1997
2840564995681129999 ~1997
284075179284075179110 ~1999
2840914915681829839 ~1997
2840928715681857439 ~1997
2840994115681988239 ~1997
2841084835682169679 ~1997
284114161170468496710 ~1998
284116037227292829710 ~1998
Exponent Prime Factor Digits Year
284119001227295200910 ~1998
284130479227304383310 ~1998
2841332635682665279 ~1997
2841393715682787439 ~1997
2841400195682800399 ~1997
284141413170484847910 ~1998
2841446035682892079 ~1997
2841537835683075679 ~1997
2841594835683189679 ~1997
2841600115683200239 ~1997
2841610795683221599 ~1997
284163233681991759310 ~2000
284164541170498724710 ~1998
2841713395683426799 ~1997
2841748795683497599 ~1997
2841764635683529279 ~1997
2841866635683733279 ~1997
284194399511549918310 ~1999
284203853170522311910 ~1998
2842105195684210399 ~1997
284213759227371007310 ~1998
2842185595684371199 ~1997
2842214395684428799 ~1997
2842294795684589599 ~1997
2842310995684621999 ~1997
Home
4.768.925 digits
e-mail
25-05-04