Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
177743437106646062310 ~1997
177746531568788899310 ~1998
177748861106649316710 ~1997
1777623113555246239 ~1995
177762691177762691110 ~1997
1777637393555274799 ~1995
1777664993555329999 ~1995
1777690793555381599 ~1995
1777749113555498239 ~1995
177776561106665936710 ~1997
1777788233555576479 ~1995
177783293106669975910 ~1997
1777838033555676079 ~1995
177784613106670767910 ~1997
1777919513555839039 ~1995
1777931633555863279 ~1995
177802769142242215310 ~1997
1778053193556106399 ~1995
177810131853488628910 ~1999
1778175713556351439 ~1995
1778196833556393679 ~1995
1778197313556394639 ~1995
1778216033556432079 ~1995
177823769142259015310 ~1997
1778257433556514879 ~1995
Exponent Prime Factor Digits Year
1778260793556521599 ~1995
1778285033556570079 ~1995
1778298713556597439 ~1995
177830357142264285710 ~1997
177839213106703527910 ~1997
1778443913556887839 ~1995
1778460593556921199 ~1995
1778466713556933439 ~1995
177846989675818558310 ~1999
1778476433556952879 ~1995
1778500193557000399 ~1995
1778555393557110799 ~1995
1778627993557255999 ~1995
1778633633557267279 ~1995
1778660633557321279 ~1995
1778724593557449199 ~1995
177872671747065218310 ~1999
1778733731672009706311 ~2000
177875561142300448910 ~1997
177878381106727028710 ~1997
177881267142305013710 ~1997
177886913249041678310 ~1998
1778896433557792879 ~1995
177890311177890311110 ~1997
1778929193557858399 ~1995
Exponent Prime Factor Digits Year
177893347284629355310 ~1998
1778935913557871839 ~1995
1779031193558062399 ~1995
177903373106742023910 ~1997
1779044033558088079 ~1995
1779045113558090239 ~1995
177906473106743883910 ~1997
1779081233558162479 ~1995
1779120833558241679 ~1995
177913873284662196910 ~1998
1779146993558293999 ~1995
1779164633558329279 ~1995
1779171233558342479 ~1995
1779179473309273814311 ~2000
1779182633558365279 ~1995
1779244193558488399 ~1995
1779274433558548879 ~1995
1779286313558572639 ~1995
177930941106758564710 ~1997
1779312233558624479 ~1995
1779379433558758879 ~1995
177939653106763791910 ~1997
1779432113558864239 ~1995
177951953106771171910 ~1997
1779547571566001861711 ~1999
Exponent Prime Factor Digits Year
1779600113559200239 ~1995
1779613193559226399 ~1995
177963697284741915310 ~1998
1779657593559315199 ~1995
1779710633559421279 ~1995
1779716633559433279 ~1995
1779745193559490399 ~1995
1779755993559511999 ~1995
1779782993559565999 ~1995
1779812033559624079 ~1995
177981977533945931110 ~1998
1779839513559679039 ~1995
1779938633559877279 ~1995
177996031177996031110 ~1997
1780013033560026079 ~1995
1780024913560049839 ~1995
1780085633560171279 ~1995
1780123913560247839 ~1995
1780128113560256239 ~1995
1780179713560359439 ~1995
1780192793560385599 ~1995
1780201913560403839 ~1995
178020343178020343110 ~1997
1780217513560435039 ~1995
1780227113560454239 ~1995
Home
5.307.017 digits
e-mail
26-01-11