Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2515739635031479279 ~1997
251576173150945703910 ~1998
2515772515031545039 ~1997
251581361201265088910 ~1998
2515868995031737999 ~1997
2515887235031774479 ~1997
2515997035031994079 ~1997
251608783251608783110 ~1998
2516107915032215839 ~1997
2516197435032394879 ~1997
2516284915032569839 ~1997
2516305315032610639 ~1997
2516339515032679039 ~1997
251638649201310919310 ~1998
2516429995032859999 ~1997
2516464435032928879 ~1997
2516487835032975679 ~1997
2516493835032987679 ~1997
251649581754948743110 ~1999
251673637151004182310 ~1998
2516847611006739044111 ~2000
2516921635033843279 ~1997
251692687251692687110 ~1998
251695879251695879110 ~1998
251701199201360959310 ~1998
Exponent Prime Factor Digits Year
2517111235034222479 ~1997
2517173635034347279 ~1997
2517185395034370799 ~1997
2517257035034514079 ~1997
2517306595034613199 ~1997
2517427195034854399 ~1997
2517569035035138079 ~1997
2517670915035341839 ~1997
2517728635035457279 ~1997
251775773755327319110 ~1999
2517759115035518239 ~1997
2517836635035673279 ~1997
251789341151073604710 ~1998
2517930715035861439 ~1997
2517967315035934639 ~1997
2518018435036036879 ~1997
2518117795036235599 ~1997
2518164235036328479 ~1997
2518242835036485679 ~1997
251834969201467975310 ~1998
251835247856239839910 ~2000
2518406515036813039 ~1997
251843429201474743310 ~1998
2518443715036887439 ~1997
251846669352585336710 ~1999
Exponent Prime Factor Digits Year
2518588915037177839 ~1997
2518594315037188639 ~1997
2518656715037313439 ~1997
2518667995037335999 ~1997
2518764595037529199 ~1997
2518786915037573839 ~1997
251884481151130688710 ~1998
2518887835037775679 ~1997
251902271201521816910 ~1998
2519093035038186079 ~1997
2519114035038228079 ~1997
251928707201542965710 ~1998
2519295235038590479 ~1997
2519299435038598879 ~1997
251930333151158199910 ~1998
2519426995038853999 ~1997
2519443915038887839 ~1997
2519478235038956479 ~1997
2519514715039029439 ~1997
2519578195039156399 ~1997
251963839604713213710 ~1999
2519876635039753279 ~1997
2519928835039857679 ~1997
2520132595040265199 ~1997
252024701201619760910 ~1998
Exponent Prime Factor Digits Year
252040021151224012710 ~1998
2520409915040819839 ~1997
252046757201637405710 ~1998
2520506995041013999 ~1997
252052903403284644910 ~1999
2520553435041106879 ~1997
252062687201650149710 ~1998
252076247201660997710 ~1998
252079843252079843110 ~1998
2520869035041738079 ~1997
2520906235041812479 ~1997
2521007635042015279 ~1997
2521021315042042639 ~1997
2521029235042058479 ~1997
2521052515042105039 ~1997
252107549756322647110 ~1999
2521178635042357279 ~1997
252120881151272528710 ~1998
2521313035042626079 ~1997
2521333795042667599 ~1997
2521336915042673839 ~1997
2521372795042745599 ~1997
252137519806840060910 ~2000
2521380835042761679 ~1997
2521390315042780639 ~1997
Home
4.768.925 digits
e-mail
25-05-04