Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2872528315745056639 ~1997
2872528915745057839 ~1997
2872540435745080879 ~1997
287254133172352479910 ~1998
2872571995745143999 ~1997
287260991517069783910 ~1999
2872643395745286799 ~1997
2872746715745493439 ~1997
287278169229822535310 ~1999
2872797115745594239 ~1997
2872799395745598799 ~1997
2872813315745626639 ~1997
2872814515745629039 ~1997
2872840315745680639 ~1997
2872844515745689039 ~1997
287288809632035379910 ~2000
2872910995745821999 ~1997
2872955395745910799 ~1997
287309417172385650310 ~1998
2873151115746302239 ~1997
2873176195746352399 ~1997
2873395435746790879 ~1997
2873533435747066879 ~1997
2873544374597670992111 ~2002
2873585635747171279 ~1997
Exponent Prime Factor Digits Year
2873586715747173439 ~1997
2873597035747194079 ~1997
2873604715747209439 ~1997
2873635915747271839 ~1997
287367361632208194310 ~2000
287385313172431187910 ~1998
2873892115747784239 ~1997
2873982533621217987911 ~2001
2874005515748011039 ~1997
2874038395748076799 ~1997
2874093595748187199 ~1997
2874101635748203279 ~1997
2874179515748359039 ~1997
287424283459878852910 ~1999
287424569229939655310 ~1999
2874297715748595439 ~1997
2874474115748948239 ~1997
2874523315749046639 ~1997
2874556315749112639 ~1997
287458649229966919310 ~1999
2874588235749176479 ~1997
28748940743065913168712 ~2004
2874910315749820639 ~1997
2875025291150010116111 ~2000
287505641172503384710 ~1998
Exponent Prime Factor Digits Year
2875089715750179439 ~1997
2875096795750193599 ~1997
287526521172515912710 ~1998
287533601172520160710 ~1998
287540657172524394310 ~1998
2875470595750941199 ~1997
2875569111437784555111 ~2000
287560597172536358310 ~1998
2875622393508259315911 ~2001
2875627915751255839 ~1997
2875658515751317039 ~1997
2875663795751327599 ~1997
287595299230076239310 ~1999
2875960915751921839 ~1997
2875986595751973199 ~1997
2876209195752418399 ~1997
2876256595752513199 ~1997
2876275915752551839 ~1997
2876287915752575839 ~1997
2876333035752666079 ~1997
2876390635752781279 ~1997
2876470435752940879 ~1997
2876501515753003039 ~1997
2876541835753083679 ~1997
2876543515753087039 ~1997
Exponent Prime Factor Digits Year
287657047517782684710 ~1999
2876577595753155199 ~1997
2876710315753420639 ~1997
287672821172603692710 ~1998
2876746315753492639 ~1997
2876823595753647199 ~1997
287683589230146871310 ~1999
287685313172611187910 ~1998
2876948995753897999 ~1997
287701901172621140710 ~1998
287705813172623487910 ~1998
2877191635754383279 ~1997
2877232315754464639 ~1997
2877271315754542639 ~1997
287728561633002834310 ~2000
2877298315754596639 ~1997
2877320515754641039 ~1997
2877380515754761039 ~1997
2877679795755359599 ~1997
287778433172667059910 ~1998
2877957595755915199 ~1997
287797399287797399110 ~1999
2878002115756004239 ~1997
287802041863406123110 ~2000
287803787230243029710 ~1999
Home
4.724.182 digits
e-mail
25-04-13