Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
281721653394410314310 ~1999
2817358795634717599 ~1997
2817411111577750221711 ~2001
2817528115635056239 ~1997
281757431225405944910 ~1998
2817593635635187279 ~1997
2817635515635271039 ~1997
2817664315635328639 ~1997
2817681715635363439 ~1997
2817731395635462799 ~1997
281780417169068250310 ~1998
281784353676282447310 ~2000
2817850795635701599 ~1997
2817851515635703039 ~1997
2817864715635729439 ~1997
2817933731972553611111 ~2001
2818035595636071199 ~1997
281804641169082784710 ~1998
281806457394529039910 ~1999
2818105915636211839 ~1997
281817847281817847110 ~1999
2818256995636513999 ~1997
2818471195636942399 ~1997
2818578715637157439 ~1997
2818593595637187199 ~1997
Exponent Prime Factor Digits Year
2818726915637453839 ~1997
281880877169128526310 ~1998
2818880395637760799 ~1997
2818956431127582572111 ~2000
281898577169139146310 ~1998
2819015635638031279 ~1997
2819033395638066799 ~1997
281904541169142724710 ~1998
281907973620197540710 ~2000
281915651507448171910 ~1999
2819180511578741085711 ~2001
2819195635638391279 ~1997
2819204035638408079 ~1997
2819229235638458479 ~1997
2819279635638559279 ~1997
281930339225544271310 ~1998
2819388835638777679 ~1997
2819410435638820879 ~1997
2819434211353328420911 ~2000
281947667507505800710 ~1999
2819505235639010479 ~1997
2819508115639016239 ~1997
2819568595639137199 ~1997
2819577835639155679 ~1997
281961077845883231110 ~2000
Exponent Prime Factor Digits Year
2819634595639269199 ~1997
2819653315639306639 ~1997
2819654995639309999 ~1997
281973007507551412710 ~1999
281975563451160900910 ~1999
2819795395639590799 ~1997
281979959225583967310 ~1998
2819907835639815679 ~1997
282003257169201954310 ~1998
282006433169203859910 ~1998
282006763282006763110 ~1999
2820297715640595439 ~1997
2820328435640656879 ~1997
2820390715640781439 ~1997
282042781451268449710 ~1999
282051613169230967910 ~1998
282053113846159339110 ~2000
282069553169241731910 ~1998
2820777235641554479 ~1997
2820801595641603199 ~1997
2820869635641739279 ~1997
2820889315641778639 ~1997
2821027315642054639 ~1997
282112499225689999310 ~1998
2821251595642503199 ~1997
Exponent Prime Factor Digits Year
2821351315642702639 ~1997
2821465915642931839 ~1997
2821527715643055439 ~1997
2821638595643277199 ~1997
282164093902925097710 ~2000
2821675795643351599 ~1997
282169477169301686310 ~1998
2821707715643415439 ~1997
2821800235643600479 ~1997
282192439677261853710 ~2000
282194489225755591310 ~1998
2821957795643915599 ~1997
282200641169320384710 ~1998
2822156515644313039 ~1997
2822163235644326479 ~1997
2822203315644406639 ~1997
2822270635644541279 ~1997
2822308315644616639 ~1997
282239051508030291910 ~1999
2822450395644900799 ~1997
2822731435645462879 ~1997
2822765035645530079 ~1997
2822836795645673599 ~1997
2822855515645711039 ~1997
2822927995645855999 ~1997
Home
4.724.182 digits
e-mail
25-04-13