Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2636591995273183999 ~1997
2636600035273200079 ~1997
2636615395273230799 ~1997
263680541210944432910 ~1998
2636839435273678879 ~1997
263695541158217324710 ~1998
2637045595274091199 ~1997
2637057235274114479 ~1997
2637062035274124079 ~1997
2637160315274320639 ~1997
2637217795274435599 ~1997
2637265315274530639 ~1997
2637272515274545039 ~1997
2637330595274661199 ~1997
2637390835274781679 ~1997
263739677158243806310 ~1998
263740811685726108710 ~1999
2637460195274920399 ~1997
2637463315274926639 ~1997
2637509395275018799 ~1997
2637510235275020479 ~1997
2637548995275097999 ~1997
263757341211005872910 ~1998
2637633715275267439 ~1997
2637634315275268639 ~1997
Exponent Prime Factor Digits Year
263766361158259816710 ~1998
2637664795275329599 ~1997
2637703195275406399 ~1997
263772961158263776710 ~1998
263802037422083259310 ~1999
263810669369334936710 ~1999
2638158235276316479 ~1997
2638299595276599199 ~1997
2638340712321739824911 ~2001
263835893158301535910 ~1998
263837507211070005710 ~1998
263853971211083176910 ~1998
2638545235277090479 ~1997
2638680235277360479 ~1997
2638809715277619439 ~1997
2638822915277645839 ~1997
263883497369436895910 ~1999
2638848235277696479 ~1997
2638874515277749039 ~1997
263894377158336626310 ~1998
2639064131689001043311 ~2000
2639107915278215839 ~1997
263916833158350099910 ~1998
2639265835278531679 ~1997
263927221422283553710 ~1999
Exponent Prime Factor Digits Year
263932147263932147110 ~1998
2639323795278647599 ~1997
2639343715278687439 ~1997
263937071475086727910 ~1999
2639442115278884239 ~1997
263954129211163303310 ~1998
2639649235279298479 ~1997
2639676595279353199 ~1997
2639689315279378639 ~1997
2639722315279444639 ~1997
2639834515279669039 ~1997
2639847715279695439 ~1997
2639875195279750399 ~1997
263988667263988667110 ~1998
263990443263990443110 ~1998
2639908435279816879 ~1997
264009041158405424710 ~1998
2640120715280241439 ~1997
2640128515280257039 ~1997
2640174235280348479 ~1997
2640214315280428639 ~1997
2640241439082430519311 ~2002
2640296635280593279 ~1997
2640346994066134364711 ~2001
2640352315280704639 ~1997
Exponent Prime Factor Digits Year
2640359395280718799 ~1997
2640438595280877199 ~1997
2640444715280889439 ~1997
2640570115281140239 ~1997
2640572035281144079 ~1997
2640670915281341839 ~1997
264069527211255621710 ~1998
264071233158442739910 ~1998
264073421158444052710 ~1998
2640739195281478399 ~1997
264075181158445108710 ~1998
264082837158449702310 ~1998
2640830515281661039 ~1997
264092407264092407110 ~1998
264094381158456628710 ~1998
2640944035281888079 ~1997
2640966115281932239 ~1997
2641009795282019599 ~1997
264105497211284397710 ~1998
264106541158463924710 ~1998
2641150315282300639 ~1997
2641258915282517839 ~1997
2641301035282602079 ~1997
264133057158479834310 ~1998
2641348795282697599 ~1997
Home
4.768.925 digits
e-mail
25-05-04