Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2016230994032461999 ~1996
2016296514032593039 ~1996
2016339594032679199 ~1996
2016399234032798479 ~1996
2016404034032808079 ~1996
201644537120986722310 ~1997
2016459714032919439 ~1996
201649493120989695910 ~1997
201653659201653659110 ~1998
2016541434033082879 ~1996
2016708234033416479 ~1996
2016733314033466639 ~1996
2016816714033633439 ~1996
201686141605058423110 ~1999
201686531161349224910 ~1997
201692921161354336910 ~1997
2017013994034027999 ~1996
2017099794034199599 ~1996
201721777322754843310 ~1998
2017231434034462879 ~1996
201725047806900188110 ~1999
2017284594034569199 ~1996
201734657161387725710 ~1997
201738353121043011910 ~1997
2017428114034856239 ~1996
Exponent Prime Factor Digits Year
2017533234035066479 ~1996
2017576314035152639 ~1996
201766771201766771110 ~1998
201771593121062955910 ~1997
201777161161421728910 ~1997
2017853514035707039 ~1996
2017894914035789839 ~1996
2017913634035827279 ~1996
2017965594035931199 ~1996
201796921121078152710 ~1997
2018002434036004879 ~1996
2018040234036080479 ~1996
2018051994036103999 ~1996
2018053914036107839 ~1996
2018061834036123679 ~1996
201808093121084855910 ~1997
2018081514036163039 ~1996
2018132034036264079 ~1996
2018215314036430639 ~1996
2018279634036559279 ~1996
2018305914036611839 ~1996
2018580114037160239 ~1996
2018585994037171999 ~1996
2018605914037211839 ~1996
2018679594037359199 ~1996
Exponent Prime Factor Digits Year
201875281121125168710 ~1997
2018797914037595839 ~1996
201881453121128871910 ~1997
2018860314037720639 ~1996
201888977121133386310 ~1997
201890681121134408710 ~1997
2018967594037935199 ~1996
2019023394038046799 ~1996
201911951161529560910 ~1997
2019199794038399599 ~1996
2019200514038401039 ~1996
2019286314038572639 ~1996
2019329034038658079 ~1996
201933911646188515310 ~1999
2019451434038902879 ~1996
2019501791777161575311 ~2000
201952801444296162310 ~1998
2019529314039058639 ~1996
201959743201959743110 ~1998
201962897282748055910 ~1998
2019663114039326239 ~1996
2019676995049192475111 ~2001
2019716634039433279 ~1996
201983549161586839310 ~1997
201986419484767405710 ~1998
Exponent Prime Factor Digits Year
2019895914039791839 ~1996
2019953994039907999 ~1996
2019957413029936115111 ~2000
2019987114039974239 ~1996
2020056234040112479 ~1996
2020065834040131679 ~1996
2020093194040186399 ~1996
2020137234040274479 ~1996
2020144194040288399 ~1996
2020200834040401679 ~1996
2020203234040406479 ~1996
2020272714040545439 ~1996
2020280634040561279 ~1996
2020300434040600879 ~1996
2020332594040665199 ~1996
2020359234040718479 ~1996
2020363434040726879 ~1996
2020399794040799599 ~1996
202040819161632655310 ~1997
202046837121228102310 ~1997
2020492314040984639 ~1996
2020585794041171599 ~1996
2020592394041184799 ~1996
2020600914041201839 ~1996
202060333121236199910 ~1997
Home
4.768.925 digits
e-mail
25-05-04