Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
196146241117687744710 ~1997
1961465513922931039 ~1996
1961483993922967999 ~1996
1961498513922997039 ~1996
1961536193923072399 ~1996
1961557793923115599 ~1996
196156439627700604910 ~1999
196161551156929240910 ~1997
1961690633923381279 ~1996
1961764193923528399 ~1996
1961892113923784239 ~1996
1961917913923835839 ~1996
1962026633924053279 ~1996
1962040313924080639 ~1996
1962049193924098399 ~1996
1962066113924132239 ~1996
1962076313924152639 ~1996
196212713117727627910 ~1997
1962137091569709672111 ~2000
1962151913924303839 ~1996
196216187510162086310 ~1998
196217717117730630310 ~1997
1962301793924603599 ~1996
1962306233924612479 ~1996
1962373193924746399 ~1996
Exponent Prime Factor Digits Year
196238267156990613710 ~1997
1962406313924812639 ~1996
196246601941983684910 ~1999
1962486593924973199 ~1996
1962519833925039679 ~1996
1962604793925209599 ~1996
1962614633925229279 ~1996
196264951196264951110 ~1997
1962724913925449839 ~1996
1962791033925582079 ~1996
1962881393925762799 ~1996
1962885233925770479 ~1996
1962927113925854239 ~1996
1962962513925925039 ~1996
196297681314076289710 ~1998
196298041117778824710 ~1997
196298413117779047910 ~1997
1963001033926002079 ~1996
196303337117782002310 ~1997
1963061393926122799 ~1996
1963086593926173199 ~1996
1963134233926268479 ~1996
196315453314104724910 ~1998
1963236233926472479 ~1996
1963242593926485199 ~1996
Exponent Prime Factor Digits Year
1963275833926551679 ~1996
196351381117810828710 ~1997
1963571513927143039 ~1996
1963594313927188639 ~1996
196374511196374511110 ~1997
1963746113927492239 ~1996
1963757033927514079 ~1996
196378597314205755310 ~1998
1963811513927623039 ~1996
1963843793927687599 ~1996
1963918433927836879 ~1996
1964005913928011839 ~1996
196403393117842035910 ~1997
1964077793928155599 ~1996
1964183033928366079 ~1996
1964195993928391999 ~1996
1964197193928394399 ~1996
1964230793928461599 ~1996
196427573117856543910 ~1997
196430083196430083110 ~1997
196430441157144352910 ~1997
1964315513928631039 ~1996
196438133117862879910 ~1997
196439279157151423310 ~1997
1964498993928997999 ~1996
Exponent Prime Factor Digits Year
1964600033929200079 ~1996
1964663513929327039 ~1996
1964758193929516399 ~1996
1964864033929728079 ~1996
1964875913929751839 ~1996
196490293117894175910 ~1997
1964946713929893439 ~1996
1965048233930096479 ~1996
1965160913930321839 ~1996
1965184313930368639 ~1996
1965205313930410639 ~1996
1965250793930501599 ~1996
1965333833930667679 ~1996
1965350633930701279 ~1996
1965351593930703199 ~1996
196537043471688903310 ~1998
196538873117923323910 ~1997
196540987314465579310 ~1998
1965463793930927599 ~1996
1965542033931084079 ~1996
1965585171100727695311 ~1999
1965707393931414799 ~1996
196578653117947191910 ~1997
1965793433931586879 ~1996
196583623314533796910 ~1998
Home
4.888.230 digits
e-mail
25-06-29