Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2042307234084614479 ~1996
2042312994084625999 ~1996
2042334114084668239 ~1996
2042392794084785599 ~1996
204241573122544943910 ~1997
204241753122545051910 ~1997
2042521434085042879 ~1996
204254249163403399310 ~1997
2042575914085151839 ~1996
204260587204260587110 ~1998
204260921122556552710 ~1997
2042630634085261279 ~1996
204274061122564436710 ~1997
2042783394085566799 ~1996
204283199367709758310 ~1998
204288463204288463110 ~1998
2042945394085890799 ~1996
204302173612906519110 ~1999
2043159714086319439 ~1996
2043160194086320399 ~1996
2043236994086473999 ~1996
2043314994086629999 ~1996
204335561163468448910 ~1997
2043370794086741599 ~1996
204342877122605726310 ~1997
Exponent Prime Factor Digits Year
2043469914086939839 ~1996
2043521994087043999 ~1996
2043537714087075439 ~1996
204363569286108996710 ~1998
204371213122622727910 ~1997
2043717594087435199 ~1996
2043723834087447679 ~1996
204372737163498189710 ~1997
204388507204388507110 ~1998
2043955914087911839 ~1996
2043977034087954079 ~1996
204400817122640490310 ~1997
2044029834088059679 ~1996
204403813327046100910 ~1998
2044065234088130479 ~1996
204411797163529437710 ~1997
2044119834088239679 ~1996
2044153914088307839 ~1996
204422017122653210310 ~1997
204438011163550408910 ~1997
2044387394252325771311 ~2001
2044393794088787599 ~1996
2044416234088832479 ~1996
204457261327131617710 ~1998
2044602114089204239 ~1996
Exponent Prime Factor Digits Year
204461161613383483110 ~1999
2044659234089318479 ~1996
204467119204467119110 ~1998
204468893122681335910 ~1997
2044709394089418799 ~1996
2044751091472220784911 ~2000
2044773234089546479 ~1996
204479677122687806310 ~1997
2044840194089680399 ~1996
2044957194089914399 ~1996
2044958994089917999 ~1996
204511709163609367310 ~1997
2045124594090249199 ~1996
2045211234090422479 ~1996
2045251871186246084711 ~1999
204526549490863717710 ~1999
2045265714090531439 ~1996
2045273634090547279 ~1996
204527489163621991310 ~1997
204530681777216587910 ~1999
2045313114090626239 ~1996
2045402394090804799 ~1996
204542141122725284710 ~1997
2045440314090880639 ~1996
2045468514090937039 ~1996
Exponent Prime Factor Digits Year
204547367163637893710 ~1997
204551377122730826310 ~1997
2045524373436480941711 ~2001
2045558034091116079 ~1996
2045575194091150399 ~1996
2045605794091211599 ~1996
2045618034091236079 ~1996
204572443204572443110 ~1998
2045738994091477999 ~1996
2045864634091729279 ~1996
2045956794091913599 ~1996
2046021714092043439 ~1996
204616127163692901710 ~1997
2046177114092354239 ~1996
204618853327390164910 ~1998
204621797286470515910 ~1998
2046393714092787439 ~1996
2046399834092799679 ~1996
204644257327430811310 ~1998
2046466794092933599 ~1996
2046474834092949679 ~1996
2046557394093114799 ~1996
2046559314093118639 ~1996
2046630714093261439 ~1996
2046682794093365599 ~1996
Home
4.768.925 digits
e-mail
25-05-04