Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2129139234258278479 ~1996
2129177514258355039 ~1996
212928059170342447310 ~1998
2129360514258721039 ~1996
2129370714258741439 ~1996
212945093511068223310 ~1999
2129454234258908479 ~1996
2129455914258911839 ~1996
2129518914259037839 ~1996
2129540514259081039 ~1996
2129563434259126879 ~1996
2129609994259219999 ~1996
2129627514259255039 ~1996
212964581170371664910 ~1998
212964671170371736910 ~1998
212968541170374832910 ~1998
2129742594259485199 ~1996
2129774233961380067911 ~2001
2129780634259561279 ~1996
2129817114259634239 ~1996
212992343511181623310 ~1999
213006757340810811310 ~1998
2130067794260135599 ~1996
2130116634260233279 ~1996
2130155034260310079 ~1996
Exponent Prime Factor Digits Year
2130160914260321839 ~1996
213028289170422631310 ~1998
2130326634260653279 ~1996
2130413034260826079 ~1996
213041401127824840710 ~1997
2130504714261009439 ~1996
2130515514261031039 ~1996
2130632394261264799 ~1996
213065761127839456710 ~1997
2130723114261446239 ~1996
213076693127846015910 ~1997
213079313127847587910 ~1997
2130800514261601039 ~1996
2130842171022804241711 ~1999
2130861834261723679 ~1996
213087221127852332710 ~1997
213099121127859472710 ~1997
2131018794262037599 ~1996
2131049994262099999 ~1996
213106423852425692110 ~1999
213110837127866502310 ~1997
213112091170489672910 ~1998
2131255434262510879 ~1996
2131257714262515439 ~1996
213128341341005345710 ~1998
Exponent Prime Factor Digits Year
2131304514262609039 ~1996
2131312914262625839 ~1996
2131361034262722079 ~1996
2131375314262750639 ~1996
2131442034262884079 ~1996
213144917127886950310 ~1997
2131517394263034780111 ~2001
213159173127895503910 ~1997
213160669468953471910 ~1999
2131618314263236639 ~1996
2131641834263283679 ~1996
2131702314263404639 ~1996
213171577127902946310 ~1997
213177553468990616710 ~1999
2131793535116304472111 ~2001
2131961634263923279 ~1996
2131969434263938879 ~1996
213209153298492814310 ~1998
2132203914264407839 ~1996
2132233434264466879 ~1996
2132283114264566239 ~1996
213233357170586685710 ~1998
213235681341177089710 ~1998
2132406234264812479 ~1996
213243851170595080910 ~1998
Exponent Prime Factor Digits Year
2132450994264901999 ~1996
2132460234264920479 ~1996
213254533127952719910 ~1997
2132608914265217839 ~1996
213263833127958299910 ~1997
213264851170611880910 ~1998
2132653794265307599 ~1996
213265733127959439910 ~1997
2132671794265343599 ~1996
213269821127961892710 ~1997
2132726514265453039 ~1996
2132747394265494799 ~1996
213281539725157232710 ~1999
2132907834265815679 ~1996
2132946114265892239 ~1996
213295241127977144710 ~1997
2132953314265906639 ~1996
2133011394266022799 ~1996
213303119170642495310 ~1998
2133043794266087599 ~1996
2133151434266302879 ~1996
213315581170652464910 ~1998
213315587383968056710 ~1998
213326111170660888910 ~1998
2133274794266549599 ~1996
Home
4.724.182 digits
e-mail
25-04-13