Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1350152392700304799 ~1994
135022477216035963310 ~1997
1350231832700463679 ~1994
1350244192700488399 ~1994
1350287218101723279 ~1996
1350305032700610079 ~1994
1350311032700622079 ~1994
1350366832700733679 ~1994
1350379432700758879 ~1994
1350389512700779039 ~1994
1350446218102677279 ~1996
1350477712700955439 ~1994
135050197648240945710 ~1998
1350507592701015199 ~1994
135052363135052363110 ~1996
1350551392701102799 ~1994
1350554338103325999 ~1996
1350560632701121279 ~1994
1350576618103459679 ~1996
1350579712701159439 ~1995
1350683779697909468711 ~2001
1350686538104119199 ~1996
1350710632701421279 ~1995
1350740632701481279 ~1995
1350787912701575839 ~1995
Exponent Prime Factor Digits Year
135079577108063661710 ~1996
135082483135082483110 ~1996
1350895432701790879 ~1995
1350903592701807199 ~1995
1350933232701866479 ~1995
1350937192701874399 ~1995
135093859540375436110 ~1998
135094577108075661710 ~1996
1350972178105833039 ~1996
135097321540389284110 ~1998
1350984712701969439 ~1995
1351002112702004239 ~1995
135102449432327836910 ~1997
1351056232702112479 ~1995
1351065138106390799 ~1996
1351074112702148239 ~1995
1351111912702223839 ~1995
1351116538106699199 ~1996
1351127778106766639 ~1996
1351128712702257439 ~1995
135113507324272416910 ~1997
1351141312702282639 ~1995
135115027135115027110 ~1996
1351192912702385839 ~1995
135119429108095543310 ~1996
Exponent Prime Factor Digits Year
1351208512702417039 ~1995
1351313938107883599 ~1996
135138613216221780910 ~1997
1351421512702843039 ~1995
1351481418108888479 ~1996
1351492912702985839 ~1995
1351496392702992799 ~1995
1351498792702997599 ~1995
1351517818109106879 ~1996
1351531018109186079 ~1996
1351564912703129839 ~1995
135158633729856618310 ~1998
1351586331081269064111
135160019108128015310 ~1996
1351604512703209039 ~1995
1351617592703235199 ~1995
1351623112703246239 ~1995
1351723792703447599 ~1995
1351724632703449279 ~1995
1351805178110831039 ~1996
1351852432703704879 ~1995
1351862512703725039 ~1995
1351866738111200399 ~1996
1351887178111323039 ~1996
1351913512703827039 ~1995
Exponent Prime Factor Digits Year
1351924432703848879 ~1995
1351942192703884399 ~1995
1352003578112021439 ~1996
1352009632704019279 ~1995
1352036992704073999 ~1995
135205649108164519310 ~1996
135205669973480816910 ~1998
1352058178112349039 ~1996
1352076232704152479 ~1995
1352085232704170479 ~1995
1352086792704173599 ~1995
1352128792704257599 ~1995
1352170792704341599 ~1995
1352172592704345199 ~1995
135219767108175813710 ~1996
1352217592704435199 ~1995
135222077189310907910 ~1997
1352278312704556639 ~1995
1352301592704603199 ~1995
1352320432704640879 ~1995
135232711135232711110 ~1996
1352336392704672799 ~1995
1352375512704751039 ~1995
1352396032704792079 ~1995
1352405032704810079 ~1995
Home
5.127.372 digits
e-mail
25-10-20