Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1549925993099851999 ~1995
1550010139300060799 ~1996
1550017793100035599 ~1995
1550019233100038479 ~1995
155004481248007169710 ~1997
1550054513100109039 ~1995
1550069033100138079 ~1995
1550080433100160879 ~1995
1550111633100223279 ~1995
1550134313100268639 ~1995
1550146793100293599 ~1995
1550178539301071199 ~1996
155020079279036142310 ~1997
1550220113100440239 ~1995
1550220713100441439 ~1995
1550340833100681679 ~1995
1550341379302048239 ~1996
1550396033100792079 ~1995
1550423419302540479 ~1996
1550457113100914239 ~1995
155050067124040053710 ~1996
1550526593101053199 ~1995
1550581313101162639 ~1995
155061509124049207310 ~1996
1550634233101268479 ~1995
Exponent Prime Factor Digits Year
1550638193101276399 ~1995
1550646593101293199 ~1995
1550682233101364479 ~1995
155071879155071879110 ~1997
1550723993101447999 ~1995
1550734275210467147311 ~2000
155073671124058936910 ~1996
155079893217111850310 ~1997
1550812193101624399 ~1995
1550851793101703599 ~1995
1550860313101720639 ~1995
1550915513101831039 ~1995
1550923313101846639 ~1995
1550925833101851679 ~1995
1550930513101861039 ~1995
155093387124074709710 ~1996
155095639155095639110 ~1997
1550959379305756239 ~1996
1550963033101926079 ~1995
1550967833101935679 ~1995
155097179372233229710 ~1998
1550999633101999279 ~1995
155104153248166644910 ~1997
1551083513102167039 ~1995
1551094313102188639 ~1995
Exponent Prime Factor Digits Year
1551167393102334799 ~1995
155120323155120323110 ~1997
1551242513102485039 ~1995
1551270419307622479 ~1996
155129213217180898310 ~1997
155131519155131519110 ~1997
1551351113102702239 ~1995
1551469913102939839 ~1995
1551488633102977279 ~1995
1551545579309273439 ~1996
1551562313103124639 ~1995
1551563633103127279 ~1995
1551622913103245839 ~1995
155166959124133567310 ~1996
1551685979310115839 ~1996
155170723155170723110 ~1997
1551721139310326799 ~1996
1551722993103445999 ~1995
1551734393103468799 ~1995
1551734939310409599 ~1996
1551764531086235171111 ~1999
1551766913103533839 ~1995
1551768233103536479 ~1995
155179361124143488910 ~1996
1551843979311063839 ~1996
Exponent Prime Factor Digits Year
1552024193104048399 ~1995
1552032833104065679 ~1995
1552152113104304239 ~1995
155221217217309703910 ~1997
1552225193104450399 ~1995
155222677465668031110 ~1998
155229341124183472910 ~1996
1552296113104592239 ~1995
155231057124184845710 ~1996
155233361124186688910 ~1996
1552346033104692079 ~1995
1552351913104703839 ~1995
1552360793104721599 ~1995
1552368833104737679 ~1995
1552373393104746799 ~1995
1552397513104795039 ~1995
1552413233104826479 ~1995
1552534939315209599 ~1996
1552537819315226879 ~1996
155255143155255143110 ~1997
1552589033105178079 ~1995
1552605593105211199 ~1995
1552634633105269279 ~1995
1552644233105288479 ~1995
1552654433105308879 ~1995
Home
4.724.182 digits
e-mail
25-04-13