Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
101127547101127547110 ~1995
1011277312022554639 ~1993
1011307192022614399 ~1993
1011308032022616079 ~1993
1011314032022628079 ~1993
1011314416067886479 ~1995
1011328912022657839 ~1993
1011332936067997599 ~1995
1011334192022668399 ~1993
101134081161814529710 ~1996
1011378712022757439 ~1993
1011394312022788639 ~1993
1011394912022789839 ~1993
1011400198091201539 ~1995
1011426832022853679 ~1993
1011439016068634079 ~1995
1011441112022882239 ~1993
1011448432022896879 ~1993
1011456592022913199 ~1993
1011459592022919199 ~1993
1011461632022923279 ~1993
101147171182064907910 ~1996
1011501112023002239 ~1993
1011501232023002479 ~1993
1011535792023071599 ~1993
Exponent Prime Factor Digits Year
1011553312023106639 ~1993
101160029303480087110 ~1996
1011670192023340399 ~1993
101168273141635582310 ~1996
1011712978093703779 ~1995
101173519101173519110 ~1995
1011745432023490879 ~1993
1011773392023546799 ~1993
1011833992023667999 ~1993
1011851632023703279 ~1993
1011852898094823139 ~1995
1011855232023710479 ~1993
1011874912023749839 ~1993
1011884632023769279 ~1993
1011918592023837199 ~1993
1011921376071528239 ~1995
1011935392023870799 ~1993
1011943912023887839 ~1993
1011952912023905839 ~1993
1011984112023968239 ~1993
1011988136071928799 ~1995
1011988792023977599 ~1993
1011991792023983599 ~1993
1012011832024023679 ~1993
1012044232024088479 ~1993
Exponent Prime Factor Digits Year
1012049512024099039 ~1993
1012050112024100239 ~1993
1012073992024147999 ~1993
1012089232024178479 ~1993
1012120376072722239 ~1995
1012165792024331599 ~1993
1012172878097382979 ~1995
1012201378097610979 ~1995
1012215832024431679 ~1993
1012216192024432399 ~1993
101224397141714155910 ~1996
1012260712024521439 ~1993
1012263112024526239 ~1993
101227207101227207110 ~1995
1012274632024549279 ~1993
1012323112024646239 ~1993
1012344118098752899 ~1995
101234897141728855910 ~1996
1012350832024701679 ~1993
1012378192024756399 ~1994
1012393312024786639 ~1994
1012446832024893679 ~1994
1012463992024927999 ~1994
1012477912024955839 ~1994
1012490032024980079 ~1994
Exponent Prime Factor Digits Year
1012506832025013679 ~1994
1012520278100162179 ~1995
1012547992025095999 ~1994
101254831162007729710 ~1996
1012549312025098639 ~1994
1012552432025104879 ~1994
101260741303782223110 ~1996
1012609312025218639 ~1994
1012613512025227039 ~1994
1012645432025290879 ~1994
101273177303819531110 ~1996
1012747792025495599 ~1994
1012757218102057699 ~1995
1012779832025559679 ~1994
1012792312025584639 ~1994
1012835992025671999 ~1994
1012844416077066479 ~1995
101285731101285731110 ~1995
1012891432025782879 ~1994
101290991182323783910 ~1996
1012998232025996479 ~1994
101305819101305819110 ~1995
1013093032026186079 ~1994
1013112712026225439 ~1994
1013129176078775039 ~1995
Home
4.768.925 digits
e-mail
25-05-04